On effective irrationality measures for some values of certain hypergeometric functions |
|
Author: | Heimonen, Ari1 |
Organizations: |
1University of Oulu, Faculty of Science, Department of Mathematical Sciences |
Format: | ebook |
Version: | published version |
Access: | open |
Online Access: | PDF Full Text (PDF, 1 MB) |
Persistent link: | http://urn.fi/urn:isbn:9514247191 |
Language: | English |
Published: |
1997
|
Publish Date: | 1997-03-20 |
Thesis type: | Doctoral Dissertation |
Defence Note: | Academic Dissertation to be presented with the assent of the Faculty of Science, University of Oulu, for public discussion in Kajaaninsali (Auditorium L 6), on May 10th, 1997, at 12 noon. |
Reviewer: |
Professor Seppo Hyyrö Professor Georges Rhin |
Description: |
AbstractThe dissertation consists of three articles in which irrationality measures for some values of certain special cases of the Gauss hypergeometric function are considered in both archimedean and non-archimedean metrics. The first presents a general result and a divisibility criterion for certain products of binomial coefficients upon which the sharpenings of the general result in special cases rely. The paper also provides an improvement concerning th e values of the logarithmic function. The second paper includes two other special cases, the first of which gives irrationality measures for some values of the arctan function, for example, and the second concerns values of the binomial function. All the results of the first two papers are effective, but no computation of the constants for explicit presentation is carried out. This task is fulfilled in the third article for logarithmic and binomial cases. The results of the latter case are applied to some Diophantine equations. see all
|
Series: |
Acta Universitatis Ouluensis. A, Scientiae rerum naturalium |
ISSN-E: | 1796-220X |
ISBN: | 951-42-4719-1 |
ISBN Print: | 951-42-4589-X |
Issue: | 290 |
Subjects: | |
Copyright information: |
© University of Oulu, 1997. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited. |