University of Oulu

Xenobiotic-metabolizing cytochrome P450 enzymes in human lung

Saved in:
Author: Hukkanen, Janne1
Organizations: 1University of Oulu, Faculty of Medicine, Department of Pharmacology and Toxicology
Format: ebook
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 0.9 MB)
Persistent link: http://urn.fi/urn:isbn:9514258649
Language: English
Published: 2000
Publish Date: 2000-12-21
Thesis type: Doctoral Dissertation
Defence Note: Academic Dissertation to be presented with the assent of the Faculty of Medicine, University of Oulu, for public discussion in the Auditorium of the Department of Pharmacology and Toxicology, on January 26th, 2001, at 2 p.m.
Reviewer: Docent Kirsti Husgafvel-Pursiainen
Docent Kari Kivistö
Description:

Abstract

The cytochrome P450 (CYP) enzyme system in human lung is an essential component in the pulmonary carcinogenicity of several inhaled xenobiotic compounds. The aim of this study was to elucidate the expression and regulation of xenobiotic-metabolizing CYP enzymes in human lung.

To evaluate which of the two is a better surrogate cell model for lung tissue, the expression patterns of CYP enzymes in alveolar macrophages and peripheral blood lymphocytes were clarified by reverse transcriptase-polymerase chain reaction (RT-PCR) and compared to the expression in lung tissue. The pattern of CYP expression in alveolar macrophages was found to closely resemble the expression pattern in human lung tissue, while the pattern in lymphocytes was markedly different. The expression of CYP2B6, CYP2C, CYP3A5, and CYP4B1 mRNAs in alveolar macrophages was demonstrated for the first time.

To facilitate mechanistic studies on human pulmonary CYP induction, the A549 lung adenocarcinoma cell line was characterized by RT-PCR, and the CYP expression pattern was found to compare reasonably well to human lung epithelial cells. The induction of CYP1A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) behaved as predicted, and CYP1B1 and CYP3A5 were also inducible by TCDD and dexamethasone, respectively. TCDD elevated the level of CYP1A1 mRNA (56-fold), while the induction of CYP1B1 mRNA was more modest (2.5-fold). The tyrosine kinase inhibitor genistein and the protein kinase C inhibitor staurosporine blocked CYP1A1 induction by TCDD, but did not affect CYP1B1 induction. The serine/threonine protein phosphatase inhibitor calyculin A and okadaic acid enhanced CYP1B1 induction slightly, but did not alter CYP1A1 induction.

The expression of CYP3A forms in human pulmonary tissues was studied with RT-PCR and immunohistochemistry, and both methods established CYP3A5 as the main CYP3A form. CYP3A4 was expressed in only about 20% of the cases. In A549 cells, CYP3A5 was induced about 4-fold by the glucocorticoids budesonide, beclomethasone dipropionate, and dexamethasone. Maximal induction was achieved by concentrations as low as ~100 nM, suggesting that CYP3A5 could be induced in vivo in patients using inhaled glucocorticoids. However, there were no differences in CYP3A5 expression in alveolar macrophages in current glucocorticoid users, ex-users, and non-users. Cigarette smoking had a marked decreasing effect on CYP3A5 levels in alveolar macrophages. The presence and possible induction of CYP3A5 by glucocorticoids in human lung could have consequences for the maintenance of physiological steroid hormone balance in lung and the individual susceptibility to lung cancer of patients using glucocorticoids.

see all

Series: Acta Universitatis Ouluensis. D, Medica
ISSN-E: 1796-2234
ISBN: 951-42-5864-9
ISBN Print: 951-42-5863-0
Issue: 621
Subjects:
Copyright information: This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.