University of Oulu

Biochemical and reperfusion targeting strategies to improve brain protection during prolonged hypothermic circulatory arrest

Saved in:
Author: Rimpiläinen, Jussi1
Organizations: 1University of Oulu, Faculty of Medicine, Department of Surgery
Format: ebook
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 1 MB)
Persistent link:
Language: English
Published: 2001
Publish Date: 2001-01-23
Thesis type: Doctoral Dissertation
Defence Note: Academic Dissertation to be presented with the assent of the Faculty of Medicine, University of Oulu, for public discussion in the Auditorium 2 of the University Hospital of Oulu, on February 23rd, 2001, at 12 noon.
Reviewer: Professor Pertti Aarnio
Docent Kari Kuttila


Ischaemic cerebral injury follows a well attested sequence of events including three phases, i.e. depolarization, biochemical cascade and reperfusion injury. Glutamate excitotoxicity plays an important role in the development of ischaemic brain injury following prolonged hypothermic circulatory arrest (HCA), and leukocyte infiltration and a cytokine-mediated inflammatory reaction are known to play a pivotal role in the reperfusion phase. The aim of this series of experimental studies was to develop biochemical and reperfusion-related strategies to improve brain protection. We tested the hypotheses that the Na+ channel blocker lamotrigine (I) or the N-Methyl-D-Aspartate-receptor antagonist memantine (III) could improve the cerebral outcome after HCA and studied whether a leukocyte-depletion filter (L-DF; LeukoGuard LG6®, Pall Biomedical, Portsmouth, U.K) could mitigate brain injury (II). The aim of the fourth study was to find out whether lamotrigine combined with the leukocyte-depleting filter can potentiate cerebral protection (IV).

A chronic porcine model was used, in which haemodynamic, electrophysiological, metabolic and temperature monitoring were performed for four hours after the instigation of rewarming and S-100β measured up to 20 hours. Cytokines were measured, microdialysis was performed, and daily behavioural assessments were made until death or elective sacrifice on the seventh postoperative day, upon which a histopathological analysis of the brain was carried out.

The rate of EEG burst recovery was higher in the lamotrigine-treated animals, the median being 40% of the baseline compared with 17% in the placebo group at 4 hours after the start of rewarming (p = 0.02) and 80% compared with 20% at 4 hours (p = 0.01). Complete behavioural recovery was seen in 5/8 of cases (63%) after lamotrigine administration, compared with 1/8 (13%) in the placebo group (p = 0.02). The median behavioural score among the animals that survived for 7 days was higher in the lamotrigine group (8) than in the controls (7) (p = 0.02).

Mortality was 2/10 in the L-DF group and 5/10 in the controls, the median behavioural score on day 7 being higher in the L-DF group (8.5 vs. 3.5 p = 0.04). The median of the total histopathological score was 6.5 in the L-DF group and 15.5 in the control group (p = 0.005).

In the memantine group 5/10 animals survived seven days, as compared with 9/10 in the placebo group, and the median behavioural score on day 7 was 3.5 compared with 7.5 in the placebo group (p = 0.39). The median of the total histopathological score was 16 in the memantine group and 14 in the placebo group (p = 0.25).

In the LD-F + lamotrigine group 7/8 animals survived for seven days, as compared with 4/8 in the lamotrigine only group and 3/8 among the controls. EEG burst recovery 7 hours after the start of rewarming was highest in the LDF + lamotrigine group, the median being 94% (p = 0.024 vs. controls), compared with 81% in the lamotrigine group and 64% in the control group. The median behavioural score on day 7 was 9 in the LD-F + lamotrigine group (p = 0.004 vs. controls), 4 in the lamotrigine group and 0 in the control group, while the median of total histopathological score was 14 (p = 0.046 vs controls), 14.5 (p = 0.062 vs. controls) and 21, respectively. The control group had the highest intracerebral lactate, glutamate and glycerol levels after HCA.

In conclusion, the results indicate that the NA+ channel blocker lamotrigine improves the neurological outcome after a prolonged period of HCA but that the NMDA receptor antagonist memantine does not have this property in the present setting. The leukocyte-depleting filter mitigates brain injury after a prolonged period of HCA, and lamotrigine can potentiate this effect.

see all

Series: Acta Universitatis Ouluensis. D, Medica
ISSN-E: 1796-2234
ISBN: 951-42-5886-X
ISBN Print: 951-42-5885-1
Issue: 622
Copyright information: © University of Oulu, 2001. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.