University of Oulu

Pre-stressed piezoelectric actuator for micro and fine mechanical applications

Saved in:
Author: Juuti, Jari
Organizations: University of Oulu, Faculty of Technology, Department of Electrical and Information Engineering
University of Oulu, Infotech Oulu
Format: eBook
Online Access: PDF Full Text (PDF, 2.9 MB)
Persistent link: http://urn.fi/urn:isbn:9514279891
Language: English
Published: 2006
Publish Date: 2006-03-28
Thesis type: Doctoral Dissertation
Defence Note: Academic Dissertation to be presented with the assent of the Faculty of Technology, University of Oulu, for public discussion in Raahensali (Auditorium L10), Linnanmaa, on April 7th, 2006, at 12 noon
Reviewer: Doctor Pasi Kallio
Professor Ahmad Safari
Description:

Abstract

In this thesis pre-stressed piezoelectric actuators for micro and fine mechanical applications have been developed. First, RAINBOW (Reduced And INternally Biased Oxide Wafer) and thick film actuators were manufactured and their electromechanical properties were characterised. In the second part, the novel pre-stressed piezoelectric actuator PRESTO (PRE-STressed electrOactive component by using a post-fired biasing layer) was developed and its electrical and electromechanical properties were measured.

Commercial piezoelectric PZT 5A and PZT 5H discs were used in the RAINBOW and PRESTO actuators and PLZT paste for thick film actuators. The pre-stressing of the PRESTO actuators was based on the sintering shrinkage and different thermal expansion coefficient of the piezoelectric disc and passive material. Dielectric LTCC tape and AgPd paste were utilized as pre-stressing media and passive layer by using lamination and screen-printing, respectively. Different active and passive layer thicknesses and electrode materials were realized in order to obtain high displacements and good load bearing capability for actuators.

The PRESTO actuators showed a significantly higher coercive electric field than their bulk counterparts, but a decreased remanent polarisation. The displacement as a function of load was measured under 0.3–3 N loads and electric fields up to ±0.75 MV/m. The highest displacement of 118 μm was obtained with a 250 μm thick PZT 5H actuator (Ø 25 mm) with LTCC tape (thickness ~96 μm) as the pre-stressing material. The corresponding actuator with AgPd pre-stressing material (thickness ~33 μm) produced 63 μm displacement. Additionally, PRESTO actuators were tested with a glued steel layer in a mechanical amplifier which obtained displacements up to 1.2 mm.

Effective d31 coefficients of the PRESTO actuators were derived using an analysis based on unimorph model and measured displacement data. The actuators exhibited significantly enhanced effective d31 coefficients (d31eff = -690 pm/V and d31eff = -994 pm/V for PZT 5A and 5H, respectively) comparable to the RAINBOW actuators. Mass-producible PRESTO actuators with high displacement, moderate load bearing capabilities and integration possibilities can be utilised in various micro and fine mechanical devices e.g. dosing devices, electromechanical locks, regulators, positioners vibrators, speakers, adjusters, pumps, valves, relays, dispensers, micromanipulators, etc.


Series: Acta Universitatis Ouluensis. C, Technica
ISSN-E: 1796-2226
ISBN: 951-42-7989-1
ISBN Print: 951-42-7988-3
Issue: 235
Subjects:
Copyright information: This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.