University of Oulu

Electrical properties of road materials and subgrade soils and the use of Ground Penetrating Radar in traffic infrastructure surveys

Saved in:
Author: Saarenketo, Timo1
Organizations: 1University of Oulu, Faculty of Science, Department of Geosciences
Format: ebook
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 8.1 MB)
Persistent link:
Language: English
Published: 2006
Publish Date: 2006-11-01
Thesis type: Doctoral Dissertation
Defence Note: Academic dissertation to be presented, with the assent of the Faculty of Science of the University of Oulu, for public defence in Auditorium GO101, Linnanmaa, on November 11th, 2006, at 12 noon
Reviewer: Professor Heikki Niini
Professor Markku Peltoniemi


This PhD thesis is composed of a synopsis and five published papers that are focused on both the research results of studies on electrical properties of road materials and subgrade soils and their seasonal changes and the use of Ground Penetrating Radar technique in traffic infrastructure surveys. The data for this survey was collected mainly in Finland, Texas, Scotland and Sweden and thus presents many kinds of road materials, subgrade soils and climate conditions.

The synopsis of this work begins with a presentation of the theory and basic principles of GPR techniques. Special attention is given to the dielectric properties and seasonal changes of unbound road materials and subgrade soils. The synopsis also presents different kinds of GPR hardware systems as well as recommendations and experiences from different data collection, processing and interpretation techniques. Special attention is given to a method whereby GPR data is integrated with other road survey data and then analysed using a number of structural diagnostic methods. Finally, the synopsis provides an overview of of the various GPR applications on roads and streets, bridges, railways and airports.

The laboratory test results presented in this work show that the relationship between dielectric value and increasing water content is not linear or exponential but more likely a series of logarithmic functions. Laboratory results also showed that dielectric dispersion, which can be related to poorly performing subgrade soils and road aggregates, takes place mainly in loosely bound adsorption water and capillary water layer. As such these moisture sensitive problem materials can also be identified during the dry summer seasons when they are stiff. Dielectric value and electrical conductivity can also be related to other technical properties of road materials and subgrade soils such as frost susceptibility, shear strength, plastic limit, compaction degree and voids content. Laboratory tests and field data collected using the Percostation technique also demonstrate that a knowledge of seasonal changes and thermodynamics is very important in understanding and modelling the mechanical behaviour of road structures. Finally, laboratory and field tests indicate that colloids have an important role in the failure mechanism of the road materials.

This research demonstrates that the GPR technique not only gives valuable structural information on the different types of structures and subgrade soils but it provides a wide range of information of the electrical properties of the materials under survey which can be further related to their mechanical performance. The best information will be gained if GPR data is analysed together with other non destructive testing data collected form the roads, railways and airports.

see all

Series: Acta Universitatis Ouluensis. A, Scientiae rerum naturalium
ISSN-E: 1796-220X
ISBN: 951-42-8222-1
ISBN Print: 951-42-8221-3
Issue: 471
Copyright information: © University of Oulu, 2006. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.