University of Oulu

Characterisation of the human DNA damage response and replication protein Topoisomerase IIβ Binding Protein 1 (TopBP1)

Saved in:
Author: Reini, Kaarina
Organizations: University of Oulu, Faculty of Science, Department of Biochemistry
University of Oulu, Biocenter Oulu
Format: eBook
Online Access: PDF Full Text (PDF, 1.3 MB)
Persistent link: http://urn.fi/urn:isbn:9514282787
Language: English
Published: 2006
Publish Date: 2006-11-21
Thesis type: Doctoral Dissertation
Defence Note: Academic dissertation to be presented, with the assent of the Faculty of Science of the University of Oulu, for public defence in Raahensali (Auditorium L10), Linnanmaa, on December 1st, 2006, at 12 noon
Reviewer: Docent Risto Juvonen
Professor Jari Ylänne
Description:

Abstract

Genetic information is stored in the base sequence of DNA. As DNA is often damaged by radiation or reactive chemicals, cells have developed mechanisms to correct the DNA lesions. These mechanisms involve recognition of damage, DNA repair and cell cycle delay until DNA is restored. Failures in the proper processing of DNA lesions may lead to mutations, premature aging, or diseases such as cancer.

In this thesis study the human topoisomerase IIβ binding protein 1 (TopBP1) was identified as the homolog of budding yeast Dpb11 and fission yeast Cut5. TopBP1 was found to be necessary for DNA replication and to associate with replicative DNA polymerase ε. TopBP1 localised to the sites of DNA damage and stalled replication forks, which suggests a role in the DNA damage response. TopBP1 interacted with the checkpoint protein Rad9, which is a part of a protein complex whose function includes tethering proteins to sites of DNA damage. This supports a role for TopBP1 in the early steps of checkpoint activation after DNA damage. TopBP1 also interacted with the tumour suppressor protein p53 in a phosphorylation dependent manner. In addition, the data support a role for TopBP1 outside of S-phase. During M-phase, TopBP1 was found to localise to centrosomes along with the tumour suppressor proteins Brca1 and p53. Analysis of the expression of TopBP1 in mouse tissues suggested that TopBP1 may also play a role during meiosis. The localisation pattern of TopBP1 in mouse meiotic spermatocytes resembled that of many proteins functioning during meiotic recombination. For example, co-localisation of ATR kinase and TopBP1 was observed during meiotic prophase I. In accordance with the findings from mouse studies, the analysis of a cut5 mutant during yeast meiosis showed that Cut5 is essential for the meiotic checkpoint. These results strongly suggest that TopBP1 operates in replication and has checkpoint functions during both the mitotic and meiotic cell cycles.


Series: Acta Universitatis Ouluensis. A, Scientiae rerum naturalium
ISSN-E: 1796-220X
ISBN: 951-42-8278-7
ISBN Print: 951-42-8277-9
Issue: 476
Subjects:
Copyright information: This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.