University of Oulu

Characterization of second-level lead-free BGA interconnections in thermomechanically loaded LTCC/PWB assemblies

Saved in:
Author: Nousiainen, Olli1
Organizations: 1University of Oulu, Faculty of Technology, Department of Mechanical Engineering
Format: ebook
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 2.7 MB)
Persistent link: http://urn.fi/urn:isbn:9789514263538
Language: English
Published: Oulu : University of Oulu, 2010
Publish Date: 2010-11-23
Thesis type: Doctoral Dissertation
Defence Note: Academic dissertation to be presented with the assent of the Faculty of Technology of the University of Oulu for public defence in OP-sali (Auditorium L10), Linnanmaa, on 3 December 2010, at 12 noon
Tutor: Professor Pertti Karjalainen
Reviewer: Docent Toni Mattila
Doctor Jussi Särkkä
Description:

Abstract

Low-temperature co-fired ceramic (LTCC) based system-in-package (SiP) is an emerging multilayer module technology for wireless communication applications, mainly due to its excellent high-frequency material properties. LTCC-SiP modules are typically soldered onto an organic motherboard, but the lifetime of the 2nd-level solder joints is often poor due to the high stress level of the joints in test/field conditions. Moreover, using lead-free solders in the interconnections of LTCC modules raised new questions about the feasibility and reliability of the solder joints in LTCC applications. Therefore, the characteristic features of the 2nd-level solder joint configuration were determined in this thesis work.

It was proved that collapsible Sn4Ag0.5Cu spheres are not a feasible option in LTCC/PWB assemblies with a large global thermal mismatch; a non-collapsible ball grid array (BGA) joint with a plastic core solder balls (PCSBs) was required to attain an adequate lifetime for such assemblies. To enhance the thermal fatigue endurance of the non-collapsible lead-free joints, a novel BGA joint consisting of Sn7In4.1Ag0.5Cu solder and PCSBs was developed. Moreover, this work proved that there is a relationship between the primary failure mechanisms of various Sn-based lead-free solders and thermomechanically induced stress level in the present non-collapsible BGA joint configuration.

The effect of the plating material of the solder lands on the failure mechanism of the BGA joints in the LTCC/PWB assemblies was studied. The results showed that the adverse phenomena related to the sintered Ag-based metallization materials can be avoided using electroless nickel with immersion gold (ENIG) as a deposit material. On the other hand, this study also demonstrated that the inadequate adhesion strength of the commercial base metallization in the ENIG-plated modules resulted in the disadvantageous failure mechanism of the test assemblies. Therefore, the criteria for material selection and the design aspects of reliable 2nd-level interconnections are discussed thoroughly in this thesis.

see all

Series: Acta Universitatis Ouluensis. C, Technica
ISSN: 0355-3213
ISSN-E: 1796-2226
ISSN-L: 0355-3213
ISBN: 978-951-42-6353-8
ISBN Print: 978-951-42-6352-1
Issue: 369
Subjects:
Copyright information: © University of Oulu, 2010. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.