University of Oulu

Integrated analogue CMOS circuits and structures for heart rate detectors and other low-voltage, low-power applications

Saved in:
Author: Lasanen, Kimmo
Organizations: University of Oulu, Faculty of Technology, Department of Electrical and Information Engineering
University of Oulu, Infotech Oulu
Format: eBook
Online Access: PDF Full Text (PDF, 1.2 MB)
Persistent link: http://urn.fi/urn:isbn:9789514294556
Language: English
Published: Oulu : University of Oulu, 2011
Publish Date: 2011-05-14
Thesis type: Doctoral Dissertation
Defence Note: Academic dissertation to be presented with the assent of the Faculty of Technology of the University of Oulu for public defence in OP-sali (Auditorium L10), Linnanmaa, on 24 May 2011, at 11 a.m.
Tutor: Professor Juha Kostamovaara
Reviewer: Professor Andrea Baschirotto
Professor Kari Halonen
Description:

Abstract

This thesis describes the development of low-voltage, low-power circuit blocks and structures for portable, battery-operated applications such as heart rate detectors, pacemakers and hearing-aid devices. In this work, the definition for low supply voltage operation is a voltage equal to or less than the minimum supply voltage needed to operate an analogue switch, i.e. VDD(min) ≤ 2VT + Vov, which enables the use of a single cell battery whose polar voltage is 1 – 1.5 V. The targeted power consumption is in a range of microwatts.

The design restrictions for analogue circuit design caused by the low supply voltage requirement of the latest and future CMOS process technologies were considered and a few circuit blocks, namely two operational amplifiers, a Gm–C filter and a bandgap voltage reference circuit, were first designed to investigate their feasibility for the above-mentioned low-voltage and low-power environment. Two operational amplifiers with the same target specifications were designed with two different types of input stages, i.e. a floating-gate and a bulk-driven input stage, in order to compare their properties. Based on the experiences collected from the designed circuit blocks, an analogue CMOS preprocessing stage for a heart rate detector and a self-calibrating RC oscillator for clock and resistive/capacitive sensor applications were designed, manufactured and tested.

The analogue preprocessing stage for a heart rate detector includes a continuous-time offset-compensated preamplifier with a gain of 40 dB, an 8th-order switched-opamp switched-capacitor bandpass filter, a 32-kHz crystal oscillator and a bias circuit, and it achieves the required performance with a supply voltage range of 1.0 – 1.8 V and a current consumption of 3 μA. The self-calibrating RC oscillator operates with supply voltages of 1.2 – 3.0 V and achieves a tunable frequency range of 0.2 – 150 MHz with a total accuracy of ±1% within a supply voltage range of 1.2 – 1.5 V, a temperature range from -20 to 60 °C and a current consumption of less than 70 μA @ 5 MHz with external high precision resistor and capacitor.

The measurement results prove that the developed low-voltage low-power analogue circuit structures can achieve the required performance and therefore be successfully implemented with modern CMOS process technologies with limited supply voltages.


Tiivistelmä

Tämä väitöskirja käsittelee matalan käyttöjännitteen pienitehoisten piirirakenteiden kehittämistä kannettaviin, paristokäyttöisiin sovelluksiin kuten esimerkiksi sykemittareihin, sydämen tahdistimiin ja kuulolaitteisiin. Matalalla käyttöjännitteellä tarkoitetaan jännitettä, joka on pienempi tai yhtäsuuri kuin analogisen kytkimen tarvitsema pienin mahdollinen käyttöjännite, VDD(min) ≤ 2VT + Vov, joka mahdollistaa piirin toiminnan yhdellä paristolla, jonka napajännite on 1 – 1,5 V. Tavoiteltu tehonkulutus on mikrowattiluokkaa.

Piirirakenteiden suunnittelussa otettiin huomioon viimeisimpien ja lähitulevaisuuden CMOS-valmistusteknologioiden aiheuttamat matalan käyttöjännitteen erityisvaatimukset ja niiden pohjalta kehitettiin aluksi kaksi erilaista operaatiovahvistinta, GmC-suodatin, ja bandgap-jännitereferenssi. Operaatiovahvistimet toteutettiin samoin tavoitevaatimuksin kahdella eri tekniikalla käyttäen toisen vahvistimen tuloasteessa ns. kelluvahilaisia tulotransistoreita ja toisen tuloasteessa ns. allasohjattuja tulotransistoreita. Kehitetyistä rakenteista saatujen kokemusten pohjalta suunniteltiin, valmistettiin ja testattiin kaksi erilaista CMOS-teknologialla toteutettua mikropiiriä, jotka olivat analoginen esikäsittelypiiri sydämen sykkeen mittaukseen ja itsekalibroiva RC-oskillaattori resistiivisiin/kapasitiivisiin sensorisovelluksiin.

Sydämen sykkeen esikäsittelypiiri sisältää jatkuva-aikaisen, offset-kompensoidun esivahvistimen, jonka vahvistus on 40 dB, kytketyistä kapasitansseista ja kytketyistä operaatiovahvistimista koostuvan kahdeksannen asteen kaistanpäästösuodattimen, 32 kHz kideoskillaattorin ja bias-piirin. Esikäsittelypiiri saavuttaa vaadittavan suorituskyvyn 1,0 – 1,8 V käyttöjännitteellä ja 3 μA virrankulutuksella. Itsekalibroivan RC-oskillaattorin käyttöjännitealue puolestaan on 1,2 – 3,0 V ja käyttökelpoinen taajuusalue 0,2 – 150 MHz. Ulkoista tarkkuusvastusta ja kondensaattoria käytettäessä oskillaattori saavuttaa ±1 % tarkkuuden 1,2 – 1,5 V käyttöjännitteillä ja -20 – 60 °C lämpötila-alueella virrankulutuksen jäädessä alle 70 μA @ 5 MHz.

Mittaustulokset osoittavat, että kehitetyt matalan käyttöjännitteen pienitehoiset analogiset rakenteet saavuttavat vaadittavan suorituskyvyn ja voidaan näin ollen menestyksekkäästi valmistaa moderneilla matalan käyttöjännitteen CMOS-teknologioilla.


Series: Acta Universitatis Ouluensis. C, Technica
ISSN: 0355-3213
ISSN-E: 1796-2226
ISSN-L: 0355-3213
ISBN: 978-951-42-9455-6
ISBN Print: 978-951-42-9454-9
Issue: 383
Subjects:
Copyright information: This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.