University of Oulu

Software-based countermeasures to 2D facial spoofing attacks

Saved in:
Author: Komulainen, Jukka
Organizations: University of Oulu Graduate School
University of Oulu, Faculty of Information Technology and Electrical Engineering, Department of Computer Science and Engineering
University of Oulu, Infotech Oulu
Format: eBook
Online Access: PDF Full Text (PDF, 1.4 MB)
Persistent link: http://urn.fi/urn:isbn:9789526208732
Language: English
Published: Oulu : University of Oulu, 2015
Publish Date: 2015-08-11
Thesis type: Doctoral Dissertation
Defence Note: Academic dissertation to be presented, with the assent of the Doctoral Training Committee of Technology and Natural Sciences of the University of Oulu, for public defence in the Wetteri auditorium (IT115), Linnanmaa, on 21 August 2015, at 12 noon
Tutor: Professor Matti Pietikäinen
Docent Abdenour Hadid
Reviewer: Associate Professor Arun Ross
Associate Professor Julian Fierrez
Opponent: Associate Professor Joni Kämäräinen
Description:

Abstract

Because of its natural and non-intrusive interaction, identity verification and recognition using facial information is among the most active areas in computer vision research. Unfortunately, it has been shown that conventional 2D face recognition techniques are vulnerable to spoofing attacks, where a person tries to masquerade as another one by falsifying biometric data and thereby gaining an illegitimate advantage.

This thesis explores different directions for software-based face anti-spoofing. The proposed approaches are divided into two categories: first, low-level feature descriptors are applied for describing the static and dynamic characteristic differences between genuine faces and fake ones in general, and second, complementary attack-specific countermeasures are investigated in order to overcome the limitations of generic spoof detection schemes.

The static face representation is based on a set of well-known feature descriptors, including local binary patterns, Gabor wavelet features and histogram of oriented gradients. The key idea is to capture the differences in quality, light reflection and shading by analysing the texture and gradient structure of the input face images. The approach is then extended to the spatiotemporal domain when both facial appearance and dynamics are exploited for spoof detection using local binary patterns from three orthogonal planes.

It is reasonable to assume that no generic spoof detection scheme is able to detect all known, let alone unseen, attacks scenarios. In order to find out well-generalizing countermeasures, the problem of anti-spoofing is broken into two attack-specific sub-problems based on whether the spoofing medium can be detected in the provided view or not. The spoofing medium detection is performed by describing the discontinuities in the gradient structures around the detected face. If the display medium is concealed outside the view, a combination of face and background motion correlation measurement and texture analysis is applied. Furthermore, an open-source anti-spoofing fusion framework is introduced and its system-level performance is investigated more closely in order to gain insight on how to combine different anti-spoofing modules.

The proposed spoof detection schemes are evaluated on the latest benchmark datasets. The main findings of the experiments are discussed in the thesis.


Tiivistelmä

Kasvokuvaan perustuvan henkilöllisyyden tunnistamisen etuja ovat luonnollinen vuorovaikutus ja etätunnistus, minkä takia aihe on ollut erittäin aktiivinen tutkimusalue konenäön tutkimuksessa. Valitettavasti tavanomaiset kasvontunnistustekniikat ovat osoittautuneet haavoittuvaisiksi hyökkäyksille, joissa kameralle esitetään jäljennös kohdehenkilön kasvoista positiivisen tunnistuksen toivossa.

Tässä väitöskirjassa tutkitaan erilaisia ohjelmistopohjaisia ratkaisuja keinotekoisten kasvojen ilmaisuun petkuttamisen estämiseksi. Työn ensimmäisessä osassa käytetään erilaisia matalan tason piirteitä kuvaamaan aitojen ja keinotekoisten kasvojen luontaisia staattisia ja dynaamisia eroavaisuuksia. Työn toisessa osassa esitetään toisiaan täydentäviä hyökkäystyyppikohtaisia vastakeinoja, jotta yleispätevien menetelmien puutteet voitaisiin ratkaista ongelmaa rajaamalla.

Kasvojen staattisten ominaisuuksien esitys perustuu yleisesti tunnettuihin matalan tason piirteisiin, kuten paikallisiin binäärikuvioihin, Gabor-tekstuureihin ja suunnattujen gradienttien histogrammeihin. Pääajatuksena on kuvata aitojen ja keinotekoisten kasvojen laadun, heijastumisen ja varjostumisen eroavaisuuksia tekstuuria ja gradienttirakenteita analysoimalla. Lähestymistapaa laajennetaan myös tila-aika-avaruuteen, jolloin hyödynnetään samanaikaisesti sekä kasvojen ulkonäköä ja dynamiikkaa irroittamalla paikallisia binäärikuvioita tila-aika-avaruuden kolmelta ortogonaaliselta tasolta.

Voidaan olettaa, ettei ole olemassa yksittäistä yleispätevää vastakeinoa, joka kykenee ilmaisemaan jokaisen tunnetun hyökkäystyypin, saati tuntemattoman. Näin ollen työssä keskitytään tarkemmin kahteen hyökkäystilanteeseen. Ensimmäisessä tapauksessa huijausapuvälineen reunoja ilmaistaan analysoimalla gradienttirakenteiden epäjatkuvuuksia havaittujen kasvojen ympäristössä. Jos apuvälineen reunat on piilotettu kameran näkymän ulkopuolelle, petkuttamisen ilmaisu toteutetaan yhdistämällä kasvojen ja taustan liikkeen korrelaation mittausta ja kasvojen tekstuurianalyysiä. Lisäksi työssä esitellään vastakeinojen yhdistämiseen avoimen lähdekoodin ohjelmisto, jonka avulla tutkitaan lähemmin menetelmien fuusion vaikutuksia.

Tutkimuksessa esitetyt menetelmät on kokeellisesti vahvistettu alan viimeisimmillä julkisesti saatavilla olevilla tietokannoilla. Tässä väitöskirjassa käydään läpi kokeiden päähavainnot.


Series: Acta Universitatis Ouluensis. C, Technica
ISSN: 0355-3213
ISSN-E: 1796-2226
ISSN-L: 0355-3213
ISBN: 978-952-62-0873-2
ISBN Print: 978-952-62-0872-5
Issue: 537
Subjects:
Copyright information: This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.