University of Oulu

Intelligent information processing in building monitoring systems and applications

Saved in:
Author: Skön, Jukka-Pekka
Organizations: University of Oulu Graduate School
University of Oulu, Faculty of Technology
Format: eBook
Online Access: PDF Full Text (PDF, 3.4 MB)
Persistent link: http://urn.fi/urn:isbn:9789526209913
Language: English
Published: Oulu : University of Oulu, 2015
Publish Date: 2015-11-10
Thesis type: Doctoral Dissertation
Defence Note: Academic dissertation to be presented with the assent of the Doctoral Training Committee of Technology and Natural Sciences of the University of Oulu for public defence in Kuusamonsali (YB210), Linnanmaa, on 20 November 2015, at 12 noon
Tutor: Professor Kauko Leiviskä
Professor Mikko Kolehmainen
Docent Pertti Pasanen
Reviewer: Professor Risto Kosonen
Doctor Markku Virtanen
Opponent: Professor Risto Kosonen
Professor Jarek Kurnitski
Description:

Abstract

Global warming has set in motion a trend for cutting energy costs to reduce the carbon footprint. Reducing energy consumption, cutting greenhouse gas emissions and eliminating energy wastage are among the main goals of the European Union (EU). The buildings sector is the largest user of energy and CO2 emitter in the EU, estimated at approximately 40% of the total consumption. According to the International Panel on Climate Change, 30% of the energy used in buildings could be reduced with net economic benefits by 2030. At the same time, indoor air quality is recognized more and more as a distinct health hazard. Because of these two factors, energy efficiency and healthy housing have become active topics in international research.

The main aims of this thesis were to study and develop a wireless building monitoring and control system that will produce valuable information and services for end-users using computational methods. In addition, the technology developed in this thesis relies heavily on building automation systems (BAS) and some parts of the concept termed the “Internet of Things” (IoT). The data refining process used is called knowledge discovery from data (KDD) and contains methods for data acquisition, pre-processing, modeling, visualization and interpreting the results and then sharing the new information with the end-users. In this thesis, four examples of data analysis and knowledge deployment are presented.

The results of the case studies show that innovative use of computational methods provides a good basis for researching and developing new information services. In addition, the data mining methods used, such as regression and clustering completed with efficient data pre-processing methods, have a great potential to process a large amount of multivariate data effectively.

The innovative and effective use of digital information is a key element in the creation of new information services. The service business in the building sector is significant, but plenty of new possibilities await capable and advanced companies or organizations. In addition, end-users, such as building maintenance personnel and residents, should be taken into account in the early stage of the data refining process.

Furthermore, more advantages can be gained by courageous co-operation between companies and organizations, by utilizing computational methods for data processing to produce valuable information and by using the latest technologies in the research and development of new innovations.


Tiivistelmä

Rakennus- ja kiinteistösektori on suurin fossiilisilla polttoaineilla tuotetun energian käyttäjä. Noin 40 prosenttia kaikesta energiankulutuksesta liittyy rakennuksiin, rakentamiseen, rakennusmateriaaleihin ja rakennuksien ylläpitoon. Ilmastonmuutoksen ehkäisyssä rakennusten energiankäytön vähentämisellä on suuri merkitys ja rakennuksissa energiansäästöpotentiaali on suurin. Tämän seurauksena yhä tiiviimpi ja energiatehokkaampi rakentaminen asettaa haasteita hyvän sisäilman laadun turvaamiselle. Näistä seikoista johtuen sisäilman laadun tutkiminen ja jatkuvatoiminen mittaaminen on tärkeää.

Väitöskirjan päätavoitteena on kuvata kehitetty energiankulutuksen ja sisäilman laadun monitorointijärjestelmä. Järjestelmän tuottamaa mittaustietoa on jalostettu eri loppukäyttäjiä palvelevaan muotoon. Tiedonjalostusprosessi koostuu tiedon keräämisestä, esikäsittelystä, tiedonlouhinnasta, visualisoinnista, tulosten tulkitsemisesta ja oleellisen tiedon välittämisestä loppukäyttäjille. Aineiston analysointiin on käytetty tiedonlouhintamenetelmiä, kuten esimerkiksi klusterointia ja ennustavaa mallintamista.

Väitöskirjan toisena tavoitteena on tuoda esille jatkuvatoimiseen mittaamiseen liittyviä haasteita sekä rohkaista yrityksiä ja organisaatioita käyttämään tietovarantoja monipuolisemmin ja tehokkaammin.

Väitöskirja pohjautuu viiteen julkaisuun, joissa kuvataan kehitetty monitorointijärjestelmä, osoitetaan tiedonjalostusprosessin toimivuus erilaisissa tapauksissa ja esitetään esimerkkejä kuhunkin prosessivaiheeseen soveltuvista laskennallisista menetelmistä. Julkaisuissa on kuvattu energiankulutuksen ja sisäilman laadun informaatiopalvelu sekä sisäilman laatuun liittyviä data-analyysejä omakoti- ja kerrostaloissa sekä koulurakennuksissa.

Innovatiivinen digitaalisen tiedon hyödyntäminen on avainasemassa kehitettäessä uusia informaatiopalveluita. Kiinteistöalalle on kehitetty lukuisia informaatioon pohjautuvia palveluita, mutta ala tarjoaa edelleen hyviä liiketoimintamahdollisuuksia kyvykkäille ja kehittyneille yrityksille sekä organisaatioille.


Series: Acta Universitatis Ouluensis. C, Technica
ISSN: 0355-3213
ISSN-E: 1796-2226
ISSN-L: 0355-3213
ISBN: 978-952-62-0991-3
ISBN Print: 978-952-62-0990-6
Issue: 549
Subjects:
Copyright information: This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.