University of Oulu

On-device synthesis of customized carbon nanotube structures

Saved in:
Author: Pitkänen, Olli1,2
Organizations: 1University of Oulu Graduate School
2University of Oulu, Faculty of Information Technology and Electrical Engineering, Electrical Engineering
Format: ebook
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 10.7 MB)
Persistent link: http://urn.fi/urn:isbn:9789526223179
Language: English
Published: Oulu : University of Oulu, 2019
Publish Date: 2019-07-19
Thesis type: Doctoral Dissertation
Defence Note: Academic dissertation to be presented with the assent of the Doctoral Training Committee of Information Technology and Electrical Engineering of the University of Oulu for public defence in the Arina auditorium (TA105), Linnanmaa, on 16 August 2019, at 12 noon
Tutor: Professor Krisztian Kordas
Professor Heli Jantunen
Professor Robert Vajtai
Reviewer: Professor Johan Liu
Professor Albert Nasibulin
Opponent: Doctor Asta Kärkkäinen
Professor Albert Nasibulin
Description:

Abstract

Carbon nanotubes (CNTs) are known for their excellent mechanical, electrical and thermal properties, that have fostered a vast number of applications during the last two decades, from composites, electrodes and nanoelectonics components, to sensors and biological scaffolds. Direct integration of CNTs into devices is not straightforward, as high growth temperatures (above 600 °C) challenge the chemical and thermal stability of substrates, catalysts and other nearby materials or components. However, by decreasing growth temperature and/or working out protocols that take into account the thermal stability of the materials involved, it is possible to create several new types of architectures and devices with functionalities not shown before.

In this work, we show that, with selection of the appropriate substrate, diffusion barrier and catalyst materials, direct growth of functional CNT films and their micropatterns may be achieved, not only on Si chips, but also on other atypical surfaces, using chemical vapor deposition. This thesis explores low-temperature CNT synthesis over bi- and trimetallic catalysts, and investigates the effect of diffusion barrier layers on the electrical properties of substrate-to-CNT contacts. On one hand, the lowest achieved CNT synthesis temperature (400 °C) is compatible with most silicon technologies, thus enabling direct integration of CNTs with materials and devices with low thermal budgets. On the other hand, the results of diffusion barrier studies helped us in designing and demonstrating on-chip micropatterned CNT structures for super and pseudocapacitor electrodes. In addition, we also show a method for maskless growth of CNT micropatterns using laser-treated steel and superalloy surfaces, whose surface diffusion properties change as a result of barrier-type metal oxide formation. Furthermore, we present CNT growth on carbon materials and demonstrate entirely carbon-based hierarchical composites for electromagnetic interference shielding applications, exhibiting outstanding absorption-based shielding performance.

The results presented in this thesis are expected to contribute to a further expansion of CNT-based technologies, in particular with potential for future advances in high-frequency devices (arrays, amplifiers and shielding materials), energy materials (electrodes and scaffolds), as well as in nanoelectromechanical systems (sensors and actuators).

see all

Tiivistelmä

Hiilinanoputket tunnetaan niiden erinomaisista mekaanisista, sähköisistä ja termisistä ominaisuuksista, joita on hyödynnetty lukuisissa sovelluksissa viimeisen kahden vuosikymmenen aikana alkaen komposiiteista, elektrodeista, nanoelektroniikkakomponenteista ja sensoreista aina biologisiin tukirakenteisiin. Nanoputkien synteesi suoraan laitteessa ei ole suoraviivaista, sillä korkeat, yli 600 °C synteesilämpötilat asettavat haasteita substraatin, katalyytin sekä muiden lähellä olevien materiaalien ja komponenttien kemialliselle ja termiselle vakaudelle. Alentamalla synteesilämpötilaa ja/tai kehittämällä termisen vakauden huomioivia menetelmiä on mahdollista luoda uudenlaisia arkkitehtuureja ja sovelluksia ennennäkemättömillä ominaisuuksilla.

Tässä työssä osoitetaan, että sopivan substraatin, diffuusiosuojan ja katalyyttimateriaalin valitsemalla funktionaalisten hiilinanoputkien synteesi on mahdollista piin lisäksi myös muille, epätavallisille pinnoille käyttäen kemiallista kaasufaasipinnoitusta. Väitöstyössä käsitellään hiilinanoputkien matalan lämpötilan synteesiä hyödyntäen kaksi- ja kolmimetallisia katalyyttejä sekä tutkitaan diffuusiosuojakerroksen sähköistä vaikutusta substraatin ja hiilinanoputkien väliseen kontaktiin. Alin saavutettu synteesilämpötila (400 °C) on yhteensopiva useimpien piiteknologioiden kanssa, mikä mahdollistaa nanoputkien suoran integroinnin matalaa lämpötilaa edellyttäville materiaaleille. Työssä tutkitun diffuusiosuojakerroksen kehitys mahdollisti myös piisirun päälle toteutettujen hiilinanoputkipohjaisten super- ja pseudokondensaattorielektrodien demonstroinnin. Lisäksi työssä esitetään menetelmä, jossa laserkäsittelemällä teräs- ja supermetalliseospinta, jonka avulla mikrokuvioitu hiilinanoputkien kasvu ilman litografiaprosessia on mahdollista.

Viimeisenä työssä esitetään hiilinanoputkien synteesi suoraan toiselle hiilimateriaalille ja demonstroidaan täysin hiilipohjainen, hierarkkinen komposiittimateriaali erinomaisella absorptioon perustuvalla suojauskyvyllä sähkömagneettisiin häiriösuojaussovelluksiin.

Väitöstyössä esitettyjen tulosten odotetaan osaltaan edistävän hiilinanoputkipohjaisten teknologioiden kehitystä erityisesti korkean taajuuden laitteissa, energiamateriaaleissa sekä nanosähkömekaanisissa järjestelmissä.

see all

Osajulkaisut / Original papers

Osajulkaisut eivät sisälly väitöskirjan elektroniseen versioon / Original papers are not included in the electronic version of the dissertation.

  1. Pitkänen, O., Halonen, N., Leino, A.-R., Mäklin, J., Dombovári, Á., Lin, J. H., … Kordás, K. (2013). Low-Temperature Growth of Carbon Nanotubes on Bi- and Tri-metallic Catalyst Templates. Topics in Catalysis, 56(9–10), 522–526. https://doi.org/10.1007/s11244-013-0047-9

  2. Pitkänen, O., Lorite, G. S., Shi, G., Rautio, A.-R., Uusimäki, A., Vajtai, R., … Kordás, K. (2015). The Effect of Al Buffer Layer on the Catalytic Synthesis of Carbon Nanotube Forests. Topics in Catalysis, 58(14–17), 1112–1118. https://doi.org/10.1007/s11244-015-0479-5

  3. Pitkänen, O., Järvinen, T., Cheng, H., Lorite, G. S., Dombovari, A., Rieppo, L., … Kordás, K. (2017). On-chip integrated vertically aligned carbon nanotube based super- and pseudocapacitors. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-16604-x

    Rinnakkaistallennettu versio / Self-archived version

  4. Pitkänen, O., Hart, A. H. C., Vajtai, R., Ajayan, P. M., & Kordas, K. (2018). Maskless direct growth of carbon nanotube micropatterns on metallic substrates. Carbon, 140, 610–615. https://doi.org/10.1016/j.carbon.2018.08.047

    Rinnakkaistallennettu versio / Self-archived version

  5. Pitkänen, O., Tolvanen, J., Szenti, I., Kukovecz, Á., Hannu, J., Jantunen, H., & Kordas, K. (2019). Lightweight Hierarchical Carbon Nanocomposites with Highly Efficient and Tunable Electromagnetic Interference Shielding Properties. ACS Applied Materials & Interfaces, 11(21), 19331–19338. https://doi.org/10.1021/acsami.9b02309

    Rinnakkaistallennettu versio / Self-archived version

see all

Series: Acta Universitatis Ouluensis. C, Technica
ISSN: 0355-3213
ISSN-E: 1796-2226
ISSN-L: 0355-3213
ISBN: 978-952-62-2317-9
ISBN Print: 978-952-62-2316-2
Issue: 710
Type of Publication: G5 Doctoral dissertation (articles)
Field of Science: 213 Electronic, automation and communications engineering, electronics
216 Materials engineering
221 Nanotechnology
Subjects:
Copyright information: © University of Oulu, 2019. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.