University of Oulu

Spatial-temporal structure and distribution of the solar photospheric magnetic field

Saved in:
Author: Getachew, Tibebu1
Organizations: 1University of Oulu, Faculty of Science, Physics
Format: ebook
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 5.3 MB)
Persistent link:
Language: English
Published: Oulu : University of Oulu, 2019
Publish Date: 2019-10-29
Thesis type: Doctoral Dissertation
Defence Note: Academic Dissertation to be presented with the assent of the Doctoral Training Committee of Technology and Natural Sciences of the University of Oulu for public discussion in the Auditorium L10, Linnanmaa, on November 8th, 2019, at 12 o’clock noon.
Tutor: Professor Kalevi Mursula
Docent Ilpo Virtanen
Reviewer: Professor Roman Brajša
Doctor Todd Hoeksema
Opponent: Professor Lidia van Driel-Gesztelyi
Kustos: Professor Kalevi Mursula


I have made a detailed study of the fundamental properties of the solar photospheric magnetic field, which helps in better understanding the Sun’s radiative and particle outputs that affect the Earth’s near-space environment, as well as the entire heliosphere. Photospheric magnetic field is an essential parameter for space weather and space climate. The photospheric magnetic field includes a wide range of large-scale and small-scale structures, but the contribution of weak, small-scale fields to the total flux on the solar surface is dominant.

This thesis discusses the spatial-temporal structure and long-term evolution of the solar photospheric magnetic field. Particularly, the thesis presents, for the first time, the spatial distribution of the asymmetry of weak field values and its evolution in solar cycles 21–24. I found that the asymmetry (also called shift) of the distribution of positive and negative weak-field values is a real physical phenomenon. I also found that the shifts are most effectively produced at the supergranulation scale.

I studied the asymmetry of the distribution of weak field values separately in the two solar hemispheres. My results show that the shifts of weak-field field distributions in the two solar hemispheres have always the same sign as the new polarity of the polar field in the respective hemisphere and solar cycle. I also found that the hemispheric shifts change their sign in the late ascending to maximum phase of the solar cycle and attain their maximum in the early to mid-declining phase. This evolution of the hemispheric weak-field gives a new signal of the solar magnetic cycle.

We also studied the long-term spatial-temporal evolution of the weak-field shift and skewness of the distribution of photospheric magnetic field values during solar cycles 21–24 in order to clarify the role and relation of the weak field values to the overall magnetic field evolution. Our results give evidence for the preference of even the weakest field elements toward the prevailing magnetic polarity since the emergence of an active region, and for a systematic coalescence of stronger magnetic fields of opposite to produce weak fields during the poleward drift of the surge.

see all

Osajulkaisut / Original papers

Osajulkaisut eivät sisälly väitöskirjan elektroniseen versioon / Original papers are not included in the electronic version of the dissertation.

  1. Getachew, T., Virtanen, I., & Mursula, K. (2017). Structure of the Photospheric Magnetic Field During Sector Crossings of the Heliospheric Magnetic Field. Solar Physics, 292(11).

    Rinnakkaistallennettu versio / Self-archived version

  2. Getachew, T., Virtanen, I., & Mursula, K. (2019). Asymmetric Distribution of Weak Photospheric Magnetic Field Values. The Astrophysical Journal, 874(2), 116.

    Rinnakkaistallennettu versio / Self-archived version

  3. Getachew, T., Virtanen, I., & Mursula, K. (2019). A New Signal of the Solar Magnetic Cycle: Opposite Shifts of Weak Magnetic Field Distributions in the Two Hemispheres. Geophysical Research Letters, 46(16), 9327–9333.

    Rinnakkaistallennettu versio / Self-archived version

  4. Mursula, K., Getachew, T., & Virtanen, I. (2019). Spatial-temporal evolution of photospheric weak-field shifts in solar cycles 21-24. Manuscript submitted for publication.

see all

Series: Report series in physical sciences
ISSN: 1239-4327
ISSN-L: 1239-4327
ISBN: 978-952-62-2436-7
ISBN Print: 978-952-62-2435-0
Issue: 132
Type of Publication: G5 Doctoral dissertation (articles)
Field of Science: 114 Physical sciences
115 Astronomy and space science
Copyright information: © University of Oulu, 2019. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.