University of Oulu

Resource scheduling and cell association in 5G-V2X

Saved in:
Author: Khan, Hamza1,2
Organizations: 1University of Oulu Graduate School
2University of Oulu, Faculty of Information Technology and Electrical Engineering, Center for Wireless Communications
Format: ebook
Version: published version
Persistent link: http://urn.fi/urn:isbn:9789526227078
Language: English
Published: Oulu : University of Oulu, 2020
Publish Date: 2020-09-29
Thesis type: Doctoral Dissertation
Defence Note: Academic dissertation to be presented with the assent of the Doctoral Training Committee of Information Technology and Electrical Engineering of the University of Oulu for public defence in Auditorium IT138, Linnanmaa, on 9 October 2020, at 11 a.m.
Tutor: Associate Professor Mehdi Bennis
Reviewer: Doctor Lorenza Giupponi
Professor Muhammad Ali Imran
Opponent: Professor Jussi Kangasharju
Description:

Abstract

The fifth-generation (5G) of wireless communication is expected to serve a wide variety of applications with heterogeneous service requirements consisting of enhanced mobile broadband (eMBB), ultra-reliable and low-latency communication (URLLC), and massive machine-type communication (mMTC). Network slicing is instrumental in coping with these diverse set of requirements and service heterogeneity. The overarching goal of this thesis is to investigate radio resource allocation, focusing on eMBB and URLLC in the context of vehicular networks.

This thesis exploits the benefits of network slicing for heterogeneous access in vehicular networks from four perspectives: (i) development and validation of downlink resource allocation algorithms for vehicular networks with multiple slices and varying quality-of-service (QoS) constraints, (ii) enhancement of quality-of-experience (QoE) via joint resource allocation and video quality selection in a single-slice vehicular network, (iii) vehicle cell association and resource allocation for sum rate maximization and signalling overhead minimization in millimeter wave (mmWave) vehicular networks, and (iv) channel state information inference to reduce the overhead of acquiring channel statistics in vehicular networks and radio resource allocation of multiple slices. These aspects are studied using analytical tools from stochastic optimization and machine learning, while taking into account vehicular mobility, dynamic network states, and heterogeneous traffic demands. The outcome include resource allocation algorithms in a multi-sliced vehicular network, QoE enhancement, cell association criterion, and a novel CSI overhead reduction mechanism.

The research conducted in this thesis provides key insights into the design and optimization of vehicular communication under the constraints of latency and reliability. The obtained results show significant improvement in terms of QoS/QoE requirements, sum rate improvements, and signaling overhead reductions compared to the current state of the art.

see all

Tiivistelmä

Viidennen sukupolven langattoman viestintäteknologian (5G) odotetaan soveltuvan monenlaisiin käyttökohteisiin, joilla on erilaisia palveluvaatimuksia. Näitä ovat muun muassa parannettu mobiililaajakaista (enhanced Mobile Broadband, eMBB), huippuluotettava lyhyen viiveen tiedonsiirto (Ultra-Reliable Low Latency Communication, URLLC) ja massiivinen koneiden välinen viestintä (massive Machine Type Communication, mMTC). Verkon viipalointi (network slicing) on erittäin tärkeässä asemassa vaihtelevien vaatimusten ja palveluiden heterogeenisyyden vuoksi. Tämän väitöskirjatutkimuksen päätavoitteena on tutkia radioresurssien hallintamenetelmiä, ja työssä keskitytään erityisesti eMBB:n ja URLLC:n käyttöön ajoneuvoverkoissa.

Väitöskirjassa tutkitaan verkon viipaloinnin etuja heterogeenisissä ajoneuvoverkoissa neljästä eri näkökulmasta: (i) laskevan siirtotien resurssien hallintaan käytettävien algoritmien kehittäminen ja validointi ajoneuvoverkoissa, joissa käytetään useita verkkoviipaleita ja vaihtuvia palvelun laatuvaatimuksia (Quality of Service, QoS), (ii) kokemuksen laadun (Quality of Experience, QoE) parantaminen yhtäaikaisen resurssienhallinnan ja videon laadun valinnan avulla yhden verkkoviipaleen ajoneuvoverkoissa, (iii) ajoneuvosolujen liittäminen ja resurssien hallinta summadatanopeuden maksimoimiseksi ja tiedonsiirron kontrollidatarasitteen minimoimiseksi millimetriaalloilla (mmWave) toimivissa ajoneuvoverkoissa sekä (iv) radiokanavan tilatiedon päättely kanavatilastojen kontrollidatan pienentämiseksi ajoneuvoverkoissa ja useiden viipaleiden radioresurssien hallinnassa. Näitä näkökulmia tutkitaan stokastiseen optimointiin ja koneoppimiseen perustuvilla analyyttisillä työkaluilla huomioimalla myös ajoneuvojen liikkuvuus, dynaamiset verkkojen tilat ja dataliikenteen heterogeeniset vaatimukset. Lopputuloksia ovat moniviipaleisen ajoneuvoverkon resurssien hallintaan käytettävät algoritmit, parantunut palvelukokemuksen laatu, soluun liittymisen kriteerit ja uudenlainen kanavatilatiedon kontrollidatan tarpeen pienennysmekanismi.

Väitöskirjatutkimus tarjoaa tärkeää tietoa ajoneuvojen viestintäyhteyksien suunnitteluun ja optimointiin viiveen ja luotettavuuden aiheuttamien rajoitteiden puitteissa. Tulokset osoittavat palvelun/kokemuksen laadun ja summadatanopeuden parantuvan selvästi sekä viestinnän kontrollidatan määrän pienenevän nykyisiin johtaviin menetelmiin verrattuna.

see all

Series: Acta Universitatis Ouluensis. C, Technica
ISSN: 0355-3213
ISSN-E: 1796-2226
ISSN-L: 0355-3213
ISBN: 978-952-62-2707-8
ISBN Print: 978-952-62-2706-1
Issue: 757
Subjects:
V2X