University of Oulu

Polarization and terahertz imaging for functional characterization of biological tissues

Saved in:
Author: Borovkova, Mariia1,2
Organizations: 1University of Oulu Graduate School
2University of Oulu, Faculty of Information Technology and Electrical Engineering, Electrical Engineering, Opto-Electronics and Measurement Technicues (OPEM)
Format: ebook
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 9.8 MB)
Persistent link: http://urn.fi/urn:isbn:9789526228914
Language: English
Published: Oulu : University of Oulu, 2021
Publish Date: 2021-04-09
Thesis type: Doctoral Dissertation
Defence Note: Academic dissertation to be presented with the assent of the Doctoral Training Committee of Information Technology and Electrical Engineering of the University of Oulu for public defence in the OP auditorium (L10), Linnanmaa, on 16 April 2021, at 12 noon
Tutor: Docent Aliaksandr Bykau
Professor Igor Meglinski
Professor Alexey Popov
Reviewer: Professor Alex Vitkin
Professor Luís Oliveira
Opponent: Professor Ronald Sroka
Description:

Abstract

New methods for the functional characterization of biological tissues based on optical sensing and imaging techniques have been developed in recent decades. These advanced optical methods enable the quantitative scoring of tissue optical properties and give rise to the optical biopsy, which shows high potential for implementation in clinical practice in the near future.

The present thesis describes the methods for the functional characterization of biological tissues based on the polarized light of the visible range and terahertz radiation. The considered approaches, enhanced by methods of mathematical and statistical analysis, were applied to differentiate various conditions of biological tissues that affect their morphological structure and water content. Polarized light imaging techniques, in particular, Stokes vector polarimetry based on circularly polarized illumination and multi-wavelength Mueller matrix imaging, were used for the label-free analysis of changes in tissue depolarization and anisotropy characteristics caused by different conditions such as cancer, beta-amyloidosis, tissue stretching, and dystrophic changes of fibrillary structures. Terahertz time-domain spectroscopy was utilized to non-invasively monitor tissue dehydration in transmission- and reflection-based measurement configurations. The fundamentals of the considered methods of optical tissue characterization, their limitations, and recent advances are overviewed. The present work aims for the improvement of the considered optical imaging and characterization techniques, as well as for discovering their potential to achieve better diagnostic efficiency and for facilitating their transfer from the laboratory to clinical use.

see all

Tiivistelmä

Viime vuosikymmeninä biologisten kudosten toiminnalliseen karakterisointiin on kehitetty uusia menetelmiä, jotka perustuvat optisen tunnistamisen ja kuvantamisen tekniikoihin. Nämä kehittyneet optiset menetelmät mahdollistavat kudoksen optisten ominaisuuksien kvantitatiivisen pisteytyksen ja luovat siten pohjaa optiselle biopsialle, jolla on suuri potentiaali tulla kliiniseen käyttöön lähitulevaisuudessa.

Opinnäyte kuvaa näkyvän alueen polarisoituun valoon ja terahertsisäteilyyn perustuvat biologisten kudosten toiminnallisen karakterisoinnin menetelmät. Näitä valikoituja, matemaattisilla ja tilastollisilla analyysimenetelmillä tehostettuja lähestymistapoja sovellettiin erottelemaan biologisten kudosten morfologiseen rakenteeseen ja vesipitoisuuteen vaikuttavia erilaisia olotiloja. Polarisoitua valoa hyödyntäviä kuvantamistekniikoita, erityisesti pyöröpolarisoituun valaistukseen perustuvaa Stokes-vektoripolarimetriaa ja monen aallonpituuden Mueller-matriisikuvantamista, käytettiin kudosten depolarisaatio- ja anisotropiapiirteissä tapahtuneiden erilaisten muutosten, joita aiheuttava esimerkiksi syöpä, beta-amyloidoosin, kudosvenymä ja lihasrakenteiden rappeumamuutokset, nimeämättömään analysointiin. Aikatason terahertsispektroskopiaa käytettiin kudoksen kuivumisen kajoamattomaan seurantaan mittauskokoonpanoilla, jotka perustuvat sekä läpäisyyn että heijastukseen. Työssä luodaan yleiskuva valittujen optisten kudoksen karakterisointimenetelmien perusteista, rajoitteista ja viimeaikaisesta kehityksestä. Työ tähtää näiden optisten kuvantamis- ja karakterisointitekniikoiden parantamiseen sekä niiden uuden potentiaalin löytämiseen, jotta saavutetaan parempi diagnostinen tehokkuus ja helpotetaan tekniikoiden siirtymistä laboratoriosta kliiniseen käyttöön.

see all

Osajulkaisut / Original papers

Osajulkaisut eivät sisälly väitöskirjan elektroniseen versioon / Original papers are not included in the electronic version of the dissertation.

  1. Borovkova, M. A., Bykov, A. V., Popov, A., & Meglinski, I. V. (2020). Role of scattering and birefringence in phase retardation revealed by locus of Stokes vector on Poincaré sphere. Journal of Biomedical Optics, 25(05), 1. https://doi.org/10.1117/1.jbo.25.5.057001

    Rinnakkaistallennettu versio / Self-archived version

  2. Borovkova, M., Bykov, A., Popov, A., & Meglinski, I. (2019). Influence of scattering and birefringence on the phase shift between electric field components of polarized light propagated through biological tissues. In A. Amelink & S. K. Nadkarni (Eds.), Novel Biophotonics Techniques and Applications V. SPIE. https://doi.org/10.1117/12.2526394

    Rinnakkaistallennettu versio / Self-archived version

  3. Borovkova, M., Bykov, A., Popov, A., Pierangelo, A., Novikova, T., Pahnke, J., & Meglinski, I. (2020). Evaluating β-amyloidosis progression in Alzheimer’s disease with Mueller polarimetry. Biomedical Optics Express, 11(8), 4509. https://doi.org/10.1364/boe.396294

    Rinnakkaistallennettu versio / Self-archived version

  4. Borovkova, M. A., Bykov, A., Popov, A., Pierangelo, A., Novikova, T., Pahnke, J., & Meglinski, I. V. (2020). The use of Stokes-Mueller polarimetry for assessment of amyloid-β progression in a mouse model of Alzheimer’s disease. In R. R. Alfano, S. G. Demos, & A. B. Seddon (Eds.), Optical Biopsy XVIII: Toward Real-Time Spectroscopic Imaging and Diagnosis. SPIE. https://doi.org/10.1117/12.2550795

    Rinnakkaistallennettu versio / Self-archived version

  5. Borovkova, M., Peyvasteh, M., Dubolazov, O., Ushenko, Y., Ushenko, V., Bykov, A., Deby, S., Rehbinder, J., Novikova, T., & Meglinski, I. (2018). Complementary analysis of Mueller-matrix images of optically anisotropic highly scattering biological tissues. Journal of the European Optical Society-Rapid Publications, 14(1). https://doi.org/10.1186/s41476-018-0085-9

    Rinnakkaistallennettu versio / Self-archived version

  6. Borovkova, M., Trifonyuk, L., Ushenko, V., Dubolazov, O., Vanchulyak, O., Bodnar, G., Ushenko, Y., Olar, O., Ushenko, O., Sakhnovskiy, M., Bykov, A., & Meglinski, I. (2019). Mueller-matrix-based polarization imaging and quantitative assessment of optically anisotropic polycrystalline networks. PLOS ONE, 14(5), e0214494. https://doi.org/10.1371/journal.pone.0214494

    Rinnakkaistallennettu versio / Self-archived version

  7. Borovkova, M., Khodzitsky, M., Demchenko, P., Cherkasova, O., Popov, A., & Meglinski, I. (2018). Terahertz time-domain spectroscopy for non-invasive assessment of water content in biological samples. Biomedical Optics Express, 9(5), 2266. https://doi.org/10.1364/boe.9.002266

    Rinnakkaistallennettu versio / Self-archived version

see all

Series: Acta Universitatis Ouluensis. C, Technica
ISSN: 0355-3213
ISSN-E: 1796-2226
ISSN-L: 0355-3213
ISBN: 978-952-62-2891-4
ISBN Print: 978-952-62-2890-7
Issue: 783
Type of Publication: G5 Doctoral dissertation (articles)
Field of Science: 213 Electronic, automation and communications engineering, electronics
Subjects:
Funding: I would like to acknowledge the funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.713606. I am very grateful to the funding agency the coordinators of the I4Future doctoral programme for organizing this programme and providing me with the opportunity to pursue my doctoral degree. The study leading to this thesis was also partially supported by the OPEM Research Unit & INFOTECH strategic funding, ATTRACT grant project funded by CERN, EC Grant Agreement 777222, Academy of Finland (grants: 314369, 325097), Cost Action CA16118, Government of Russian Federation (074-U01), Oulu Biomedical Imaging Centre, SPIE Optics and Photonics Education Scholarship.
EU Grant Number: (713606) I4FUTURE - Novel Imaging and Characterisation Methods in Bio, Medical, and Environmental Research and Technology Innovations
Academy of Finland Grant Number: 314369
325097
Detailed Information: 314369 (Academy of Finland Funding decision)
325097 (Academy of Finland Funding decision)
Copyright information: © University of Oulu, 2021. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.