University of Oulu

Advanced electricity metering based on event-driven approaches

Saved in:
Author: de Castro Tomé, Mauricio1,2
Organizations: 1University of Oulu Graduate School
2University of Oulu, Faculty of Information Technology and Electrical Engineering, Communications Engineering, CWC - Networks and Systems (CWC-NS)
Format: ebook
Version: published version
Persistent link: http://urn.fi/urn:isbn:9789526229041
Language: English
Published: Oulu : University of Oulu, 2021
Publish Date: 2021-04-22
Thesis type: Doctoral Dissertation
Defence Note: Academic dissertation to be presented with the assent of the Doctoral Training Committee of Information Technology and Electrical Engineering of the University of Oulu for public defence in the OP auditorium (L10), Linnanmaa, on 29 April 2021, at 12 noon
Tutor: Professor Ari Pouttu
Professor Pedro Nardelli
Professor Luiz Carlos Pereira da Silva
Reviewer: Professor Zita Vale
Professor Geert Deconinck
Opponent: Professor Jamshid Aghaei
Professor Zita Vale
Description:

Abstract

The work presents potential improvements in electricity metering from applying an event-driven metering, or EDM, approach, instead of traditional time-based or energy-based metering. The thesis contributes a method for automatically updating the event triggers on the basis of past measurements, thereby decreasing the number of measurements that each consumer property must send. Secondly, the author introduces a series of filters that can be used for further reducing the quantity of data sent and analyses the impact of such filters’ use in reconstruction of the original signal. Finally, the impact of communication errors on the reconstruction of the signal is examined.

These improvements produce greater data compression without sacrificing the quality of the signal reconstruction. The results can serve as a foundation for more efficient deployment of advanced metering infrastructure.

see all

Tiivistelmä

Tämä työ esittelee mahdollisia saavutettavia etuja, kun sähkön kulutuksen mittauksessa käytetään tapahtuma pohjaista mittausta (event-driven metering, EDM) verrattuna perinteiseen aikapohjaiseen tai energiapohjaiseen mittaamiseen. Väitöstyö tuottaa menetelmän, jossa automaattisesti päivitetään mittaustapahtumaliipaisut pohjautuen aiempiin mittauksiin, jolloin eri kulutuspisteiden (asiakkaiden) lähetettävien mittausten lukumäärää ja datan määrää voidaan merkittävästi vähentää. Lisäksi työssä esitetään useita suodatusmenetelmiä, joilla lähetettävän datan määrää voidaan edelleen vähentää sekä analysoidaan, kuinka hyvin alkuperäinen mittaussignaali voidaan rekonstruoida kyseisiä suodattimia hyödyntäen. Lisäksi väitöstyössä tutkitaan tiedonsiirtovirheiden vaikutusta alkuperäisen mittaussignaalin rekonstruktioon.

Työssä osoitetaan, että ehdotetut parannukset tuottavat tehokkaan datanpakkausmenetelmän alkuperäisen mittaussignaalin laadun kärsimättä. Työn tuloksia voidaan hyödyntää entistä tehokkaampien älysähköverkkojen mittausinfrastruktuurien kehittämisessä.

see all

Osajulkaisut / Original papers

Osajulkaisut eivät sisälly väitöskirjan elektroniseen versioon / Original papers are not included in the electronic version of the dissertation.

  1. Tome, M. de C., Nardelli, P. H. J., & Alves, H. (2018). Event-Based Electricity Metering: An Autonomous Method to Determine Transmission Thresholds. 2018 IEEE 87th Vehicular Technology Conference (VTC Spring). https://doi.org/10.1109/vtcspring.2018.8417870

    Rinnakkaistallennettu versio / Self-archived version

  2. de Castro Tome, M., Nardelli, P., & Pereira da Silva, L. C. (2019). Flexible event-driven measurement technique for electricity metering with filtering. 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). https://doi.org/10.1109/indin41052.2019.8972086

    Rinnakkaistallennettu versio / Self-archived version

  3. Nardelli, P. H. J., de Castro Tomé, M., Alves, H., de Lima, C. H. M., & Latva-aho, M. (2016). Maximizing the link throughput between smart meters and aggregators as secondary users under power and outage constraints. Ad Hoc Networks, 41, 57–68. https://doi.org/10.1016/j.adhoc.2015.11.003

  4. de Castro Tome, M., Nardelli, P. H. J., & Alves, H. (2019). Long-Range Low-Power Wireless Networks and Sampling Strategies in Electricity Metering. IEEE Transactions on Industrial Electronics, 66(2), 1629–1637. https://doi.org/10.1109/tie.2018.2816006

    Rinnakkaistallennettu versio / Self-archived version

  5. Tome, M. C., Nardelli, P. H. J., Alves, H., & Latva-aho, M. (2016, April). Joint sampling-communication strategies for smart-meters to aggregator link as secondary users. 2016 IEEE International Energy Conference (ENERGYCON). https://doi.org/10.1109/energycon.2016.7514023

see all

Series: Acta Universitatis Ouluensis. C, Technica
ISSN: 0355-3213
ISSN-E: 1796-2226
ISSN-L: 0355-3213
ISBN: 978-952-62-2904-1
ISBN Print: 978-952-62-2903-4
Issue: 784
Type of Publication: G5 Doctoral dissertation (articles)
Field of Science: 213 Electronic, automation and communications engineering, electronics
Subjects: