The role of finely divided retained austenite on the mechanical properties of QP and ART processed novel 0.3C ultrahigh strength steels |
|
Author: | Kantanen, Pekka1,2 |
Organizations: |
1University of Oulu Graduate School 2University of Oulu, Faculty of Technology, Mechanical Engineering, Materials and Mechanical Engineering (MME) |
Format: | ebook |
Version: | published version |
Access: | open |
Online Access: | PDF Full Text (PDF, 6.1 MB) |
Persistent link: | http://urn.fi/urn:isbn:9789526236070 |
Language: | English |
Published: |
Oulu : University of Oulu,
2023
|
Publish Date: | 2023-03-10 |
Thesis type: | Doctoral Dissertation |
Defence Note: | Academic dissertation to be presented, with the assent of the Doctoral Programme Committee of Technology and Natural Sciences of the University of Oulu, for public defence in the Oulun Puhelin auditorium (L5), Linnanmaa, on 17 March 2023, at 12 noon |
Tutor: |
Professor Mahesh Somani Professor Jukka Kömi |
Reviewer: |
Doctor Peter Sandvik Associate Professor Ilchat Sabirov |
Opponent: |
Professor Esa Vuorinen Associate Professor Ilchat Sabirov |
Description: |
AbstractBoth 0.3C (high) Si-Al and 0.3C medium-Mn steels are considered ideal recipes for developing the third-generation advanced high strength steels using the innovative quenching and partitioning (QP) and austenite reversion transformation (ART) treatments, respectively. This study reports the effects of QP and ART processing on the evolved microstructural characteristics, focusing on phase transformation behavior and resultant mechanical properties, augmented by the presence of finely divided retained austenite (RA). While QP processing trials were carried out with (high) Si-Al steels, both QP and ART treatments were utilized to optimize the processing of medium-Mn steels to achieve high strength-ductility combinations. The processes were later scaled up for laboratory rolling simulations, involving thermomechanical rolling followed by direct quenching and partitioning (TMR-DQP) in the case of (high) Si-Al steels, and TMR-QP and TMR-ART treatments for medium-Mn steels. The prime objective was to gain in-depth knowledge about the effects of processing on evolved microstructures, operating structural mechanisms and corresponding mechanical properties. Physical simulation experiments were conducted on a Gleeble simulator, followed by scaling up of the experiments on a laboratory rolling mill. Detailed microstructural characterization, including the differences in fractions, morphology, C-content, and stability of RA were performed by X-ray diffraction (XRD) and electron probe microanalysis (EPMA), besides using various materials characterization and electron microscopy techniques. Mechanical properties were evaluated in respect of hardness, tensile and impact toughness properties, and structure-property correlations established. The result showed that fine division of RA between martensitic laths, besides the refinement of martensitic packets and laths, notably improved the low-temperature impact toughness. Various combinations of high tensile strengths with good elongations could be achieved with QP and ART treatments, depending on the volume fraction, size, shape, distribution and carbon content of RA and morphology of martensite. Implementation of TMR-DQP and TMR-QP and TMR-ART processing on the laboratory rolling mill was challenging, as the properties were known to be sensitive to the processing parameters, particularly the quenching temperature (TQ). see all
Tiivistelmä0.3C (korkea) pii- ja alumiiniseostetut sekä 0.3C keskimangaaniteräkset ovat houkuttelevia kandidaatteja uudeksi kolmannen sukupolven autoteollisuuden muovattavaksi suurlujuusteräkseksi. Tässä väitöskirjassa on tutkittu näiden teräksien mikrorakenteiden ominaisuuksia, austeniitti-martensiitti- ja martensiiti-austeniittifaasimuutosilmiöitä sekä näiden vaikutusta mekaanisiin ominaisuuksiin. Keskeytettyä sammutusta yhdistettynä matalan lämpötilan hehkutus (QP) prosessiin sekä austeniitin reversiomuutos (ART) -prosessiin on käytetty hyvien lujuus-sitkeysominaisuuksien saavuttamiseksi. Tavoite oli lisätä tietoa siitä, kuinka mikrorakenteen eri piirteet vaikuttavat termomekaanisesti valssatun suorasammutetun QP (TMR-DQP) ja termomekaanisesti valssatun ART (TMR-ART) teräksen ominaisuuksiin. Termomekaanista Gleeble-simulaattoria ja laboratoriokuumavalssainta on käytetty mikrorakenteen ominaisuuksien ja jäännösausteniitin hajaantumisen tutkimisessa. Lisäksi käytettiin erilaisia elektronimikroskooppeja ja analysaattoreita. Mekaanisten ominaisuuksien määrittämiseen käytettiin kovuusmittareita, veto- ja iskusitkeyskokeita. Tulokset osoittivat, että iskusitkeyteen vaikuttaa jäännösauteniitin määrän lisäksi myös rakenteen sälekoko. QP- ja ART-käsittelyillä voidaan saavuttaa erilaisia suuria vetolujuus-/venymäyhdistelmiä riippuen jäännösausteniitin määrästä, koosta, muodosta, jakaantumasta ja jäännösausteniitin hiilipitoisuudesta sekä martensiitin ja mahdollisen bainiitin morfologiasta. On haasteellista ottaa DQP-käsittely käytäntöön, koska keskeytetyn sammutuksen lämpötila vaikuttaa teräksen ominaisuuksiin ja sen hallinta tarkasti teollisessa mittakaavassa on haasteellista. ART-käsittelyssä haasteena on kapean prosessi-ikkunan (lämpötila ja hehkutusaika) hallinta ART-hehkutuslämpötiloissa. see all
Osajulkaisut / Original papersOsajulkaisut eivät sisälly väitöskirjan elektroniseen versioon. / Original papers are not included in the electronic version of the dissertation.
see all
|
Series: |
Acta Universitatis Ouluensis. C, Technica |
ISSN: | 0355-3213 |
ISSN-E: | 1796-2226 |
ISSN-L: | 0355-3213 |
ISBN: | 978-952-62-3607-0 |
ISBN Print: | 978-952-62-3606-3 |
Issue: | 872 |
Type of Publication: |
G5 Doctoral dissertation (articles) |
Field of Science: |
216 Materials engineering |
Subjects: | |
Funding: |
The research work started under the auspices of research project SUPERHIGH funded by the Research Fund for Coal and Steel (RFCS), an EU funding program. The work was later continued in successive research programs, viz., Steel Ecosystem for Focused Applications (StEFA), Intelligent Steel Applications (ISA) and Fossilfree Steel Applications (FOSSA). Jenny and Antti Wihuri Foundation (2018 and 2020) and Tauno Tönning Foundation (2022) are also gratefully acknowledged for their financial support during the course of this research work. |
Copyright information: |
© University of Oulu, 2023. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited. |