University of Oulu

Multidimensional scattering for biharmonic operator with quasi-linear perturbations

Saved in:
Author: Kultima, Jaakko1,2
Organizations: 1University of Oulu Graduate School
2University of Oulu, Faculty of Science, Mathematics, Mathematical Sciences (Math Sci)
Format: ebook
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 0.8 MB)
Persistent link: http://urn.fi/urn:isbn:9789526236896
Language: English
Published: Oulu : University of Oulu, 2023
Publish Date: 2023-05-26
Thesis type: Doctoral Dissertation
Defence Note: Academic dissertation to be presented with the assent of the Doctoral Programme Committee of Technology and Natural Sciences of the University of Oulu for public defence in auditorium LO124, Linnanmaa, on 3 June 2023, at 12 noon
Tutor: Professor Valery Serov
Docent Markus Harju
Reviewer: Professor Lauri Oksanen
Professor Katya Krupchyk
Opponent: Professor Nuutti Hyvönen
Description:

Abstract

This dissertation consists of an introduction part and four articles, where scattering problems for biharmonic operator with non-linear perturbations are considered.

First three of these articles have been published in peer-reviewed journals, and the fourth article is made publicly available on arXiv service.

In first two articles, we focus on the direct scattering problems in dimensions two and three, respectively. As the main result, the Saito’s formula is proven and uniqueness for the inverse scattering problem is therefore obtained. Last two articles concern with limited scattering data problems. In the third article, we prove that the main singularities of a combination of perturbations can be reconstructed from the backscattering data by using Born approximation. Finally, in the last article we consider fixed incident angle scattering and prove the reconstruction of the main singularities of zero-order perturbation from this dataset.

see all

Tiivistelmä

Tämä väitöskirjatyö koostuu johdannosta ja neljästä artikkelista, joissa tutkitaan sirontaongelmia biharmoniselle operaattorille, joka sisältää epälineaarisia häiriöitä johtotermille. Ensimmäiset kolme artikkelia on julkaistu vertaisarvioiduissa julkaisuissa ja neljäs on saatavilla arXiv-järjestelmässä.

Ensimmäiset kaksi artikkelia käsittelee suoraa sirontaongelmaa kaksi- ja kolmeulotteisissa reaaliavaruuksissa. Molempien artikkeleiden päätuloksena todistamme Saiton kaavan, jonka seurauksena saadaan, että käänteisellä sirontaongelmalla on yksikäsitteinen ratkaisu.

Seuraavissa kahdessa artikkelissa keskitymme osittaisen sirontadatan ongelmiin. Kolmannessa artikkelissa osoitamme, että takaisinsirontadatan perusteella, Bornin approksimaatiota käyttämällä, voidaan kerätä tietoa eräästä häiriöfunktioiden yhdistelmästä.

see all

Osajulkaisut / Original papers

Osajulkaisut eivät sisälly väitöskirjan elektroniseen versioon. / Original papers are not included in the electronic version of the dissertation.

  1. Harju, M., Kultima, J., Serov, V., & Tyni, T. (2021). Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems and Imaging, 15(5), 1015–1033. https://doi.org/10.3934/ipi.2021026

  2. Harju, M., Kultima, J., & Serov, V. (2022). Inverse scattering for three-dimensional quasi-linear biharmonic operator. Journal of Inverse and Ill-Posed Problems, 30(3), 379–393. https://doi.org/10.1515/jiip-2020-0069

    Rinnakkaistallennettu versio / Self-archived version

  3. Kultima, J., & Serov, V. (2022). Reconstruction of singularities in two-dimensional quasi-linear biharmonic operator. Inverse Problems and Imaging, 16(5), 1047–1061. https://doi.org/10.3934/ipi.2022011

  4. Kultima, J. (2022). Recovery of singularities from fixed angle scattering data for biharmonic operator in dimensions two and three. Manuscript submitted for publication. https://doi.org/10.48550/arXiv.2209.13255

see all

Series: Acta Universitatis Ouluensis. A, Scientiae rerum naturalium
ISSN: 0355-3191
ISSN-E: 1796-220X
ISSN-L: 0355-3191
ISBN: 978-952-62-3689-6
ISBN Print: 978-952-62-3688-9
Issue: 784
Type of Publication: G5 Doctoral dissertation (articles)
Field of Science: 111 Mathematics
Subjects:
Funding: This work was financially supported by the Center of Excellence of Inverse Modelling and Imaging (2018-2025).
Copyright information: © University of Oulu, 2023. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.