Multidimensional scattering for biharmonic operator with quasi-linear perturbations |
|
Author: | Kultima, Jaakko1,2 |
Organizations: |
1University of Oulu Graduate School 2University of Oulu, Faculty of Science, Mathematics, Mathematical Sciences (Math Sci) |
Format: | ebook |
Version: | published version |
Access: | open |
Online Access: | PDF Full Text (PDF, 0.8 MB) |
Persistent link: | http://urn.fi/urn:isbn:9789526236896 |
Language: | English |
Published: |
Oulu : University of Oulu,
2023
|
Publish Date: | 2023-05-26 |
Thesis type: | Doctoral Dissertation |
Defence Note: | Academic dissertation to be presented with the assent of the Doctoral Programme Committee of Technology and Natural Sciences of the University of Oulu for public defence in auditorium LO124, Linnanmaa, on 3 June 2023, at 12 noon |
Tutor: |
Professor Valery Serov Docent Markus Harju |
Reviewer: |
Professor Lauri Oksanen Professor Katya Krupchyk |
Opponent: |
Professor Nuutti Hyvönen |
Description: |
AbstractThis dissertation consists of an introduction part and four articles, where scattering problems for biharmonic operator with non-linear perturbations are considered. First three of these articles have been published in peer-reviewed journals, and the fourth article is made publicly available on arXiv service. In first two articles, we focus on the direct scattering problems in dimensions two and three, respectively. As the main result, the Saito’s formula is proven and uniqueness for the inverse scattering problem is therefore obtained. Last two articles concern with limited scattering data problems. In the third article, we prove that the main singularities of a combination of perturbations can be reconstructed from the backscattering data by using Born approximation. Finally, in the last article we consider fixed incident angle scattering and prove the reconstruction of the main singularities of zero-order perturbation from this dataset. see all
TiivistelmäTämä väitöskirjatyö koostuu johdannosta ja neljästä artikkelista, joissa tutkitaan sirontaongelmia biharmoniselle operaattorille, joka sisältää epälineaarisia häiriöitä johtotermille. Ensimmäiset kolme artikkelia on julkaistu vertaisarvioiduissa julkaisuissa ja neljäs on saatavilla arXiv-järjestelmässä. Ensimmäiset kaksi artikkelia käsittelee suoraa sirontaongelmaa kaksi- ja kolmeulotteisissa reaaliavaruuksissa. Molempien artikkeleiden päätuloksena todistamme Saiton kaavan, jonka seurauksena saadaan, että käänteisellä sirontaongelmalla on yksikäsitteinen ratkaisu. Seuraavissa kahdessa artikkelissa keskitymme osittaisen sirontadatan ongelmiin. Kolmannessa artikkelissa osoitamme, että takaisinsirontadatan perusteella, Bornin approksimaatiota käyttämällä, voidaan kerätä tietoa eräästä häiriöfunktioiden yhdistelmästä. see all
Osajulkaisut / Original papersOsajulkaisut eivät sisälly väitöskirjan elektroniseen versioon. / Original papers are not included in the electronic version of the dissertation.
see all
|
Series: |
Acta Universitatis Ouluensis. A, Scientiae rerum naturalium |
ISSN: | 0355-3191 |
ISSN-E: | 1796-220X |
ISSN-L: | 0355-3191 |
ISBN: | 978-952-62-3689-6 |
ISBN Print: | 978-952-62-3688-9 |
Issue: | 784 |
Type of Publication: |
G5 Doctoral dissertation (articles) |
Field of Science: |
111 Mathematics |
Subjects: | |
Funding: |
This work was financially supported by the Center of Excellence of Inverse Modelling and Imaging (2018-2025). |
Copyright information: |
© University of Oulu, 2023. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited. |