Self-interference cancellation for full-duplex transceivers |
|
Author: | Tapio, Visa1,2 |
Organizations: |
1University of Oulu Graduate School 2University of Oulu, Faculty of Information Technology and Electrical Engineering, Communications Engineering, CWC - Radio Technologies (CWC-RT) |
Format: | ebook |
Version: | published version |
Persistent link: | http://urn.fi/urn:isbn:9789526239194 |
Language: | English |
Published: |
Oulu : University of Oulu,
2023
|
Publish Date: | 2023-12-01 |
Thesis type: | Doctoral Dissertation |
Defence Note: | Academic dissertation to be presented with the assent of the Doctoral Programme Committee of Information Technology and Electrical Engineering of the University of Oulu for public defence in the OP auditorium (L10), Linnanmaa, on 8 December 2023, at 12 noon |
Tutor: |
Professor Markku Juntti |
Reviewer: |
Professor Tharm Ratnarajah Associate Professor Taneli Riihonen |
Opponent: |
Professor Risto Wichman |
Description: |
AbstractIn in-band full-duplex (FD) systems, the self-interference (SI) power can be more than 100 dB higher than the power of the received data signal. In order to enable FD transmissions, several SI cancellation stages are required in an FD transceiver. By combining the cancellation at the radio frequency (RF) with a specially designed antenna and cancellation circuitry, and SI cancellation at the digital baseband, the required level of SI cancellation can be achieved. In this thesis, an FD transceiver architecture is modelled with simulation tools that allow one to use realistic antenna and analog transceiver models and at the same time enable algorithm studies. The analog SI cancellation at the RF is controlled by the baseband digital processing unit, and the tuning of the RF canceller is performed with an automatic gain control enhanced iterative algorithm. When a power amplifier is the only non-linear component at the SI channel, the digital baseband SI cancellation is based on the Hammerstein model in order to take the power amplifier non-linearity into account. When realistic values for the phase noise and imbalance between the in-phase and quadrature branches of the transceiver (IQ imbalance) are taken into account, the SI after all the cancellation stages can decrease the signal-to-interference-and-noise-ratio. In order to further enhance the SI cancellation, the Hammerstein based SI canceller is extended to cancel also the effect of the receiver IQ imbalance. With the extended baseband canceller, the cancellation performance is mainly limited by the phase noise. When the non-linear operation of a low noise amplifier at the receiver is also considered, the SI channel is modelled with the Hammerstein-Wiener model. In this case, the best SI cancellation performance at the digital baseband processing is achieved with a neural network type SI canceller. see all
TiivistelmäFull duplex (FD) järjestelmissä itseishäiriön teho voi olla yli 100 dB voimakkaampi kuin vastaanotetun hyötysignaalin teho. FD-lähetysten käyttö edellyttää itseishäiriön vaimentamista FD-lähetinvastaanottimessa useilla eri menetelmillä. Yhdistämällä antennisuunnittelu ja aktiivinen häiriönvaimennus radiotaajuudella sekä digitaalinen häiriönpoisto lähetinvastaanottimen kantataajuusosissa, vaadittava häiriönvaimennus voidaan saavuttaa. Väitöskirjassa FD-lähetinvastaanotin on mallinnettu sellaisilla simulaatiotyökaluilla, jotka mahdollistavat antennien ja analogisten osien tarkan mallintamisen ja samalla mahdollistavat algoritmitutkimuksen samassa ympäristössä. Analogista radiotaajuista häiriönvaimennusta kontrolloidaan kantatajuisella, digitaalisella prosessoinnilla. Analogisen häiriönvaimennuksen ohjauksessa käytetään digitaalista, iteratiivista algoritmia hyödyntäen samalla automaattista vahvistuksen säätöä vastaanottimen analogiaosissa. Kun lähetinvastaanottimen ainoa epälineaarinen osa on tehovahvistin, digitaalinen häiriönvaimennus perustuu Hammerstein-malliin. Kun realistiset vaihekohina- ja lähetinvastaanottimen kvadratuurikanavien epätasapainoarvot (IQ-epätasapaino) huomioidaan mallissa, häiriönpoiston suorituskyky heikkenee. Laajentamalla Hammersteinin mallia, IQ-epätasapainon vaikutus voidaan kuitenkin kompensoida. Tällöin suorituskykyä rajoittavaksi tekijäksi jää vaihekohina. Kun myös vastaanottimen vahvistimen epälineaarisuus huomioidaan, itseishäiriökanava mallinnetaan Hammerstein-Wiener-mallilla. Tässä tapauksessa paras häiriönpoiston suorituskyky saavutetaan käyttämällä neuroverkkotyyppistä häiriönvaimennusta. see all
Osajulkaisut / Original papersOsajulkaisut eivät sisälly väitöskirjan elektroniseen versioon. / Original papers are not included in the electronic version of the dissertation.
see all
|
Series: |
Acta Universitatis Ouluensis. C, Technica |
ISSN: | 0355-3213 |
ISSN-E: | 1796-2226 |
ISSN-L: | 0355-3213 |
ISBN: | 978-952-62-3919-4 |
ISBN Print: | 978-952-62-3918-7 |
Issue: | 915 |
Type of Publication: |
G5 Doctoral dissertation (articles) |
Field of Science: |
213 Electronic, automation and communications engineering, electronics |
Subjects: | |
Funding: |
The research resulting in this thesis started in Full-Duplex Radios for Local Access (DUPLO) project during 2012 – 2015 funded by the European Union. The full-duplex development was then continued in Enabling Technologies for 4G, 5G, and IoT Networks (ETeNet) project between 2015 and 2018, funded by Business Finland. Since the ETeNet project, the full-duplex research has been continued in parallel with other research topics supported by the Research Council of Finland (former Academy of Finland) 6G Flagship Programme (Grant Number: 346208) without a specific project concentrating on the full-duplex concept. |
EU Grant Number: |
(316369) DUPLO - Full-Duplex Radios for Local Access |
Academy of Finland Grant Number: |
346208 |
Detailed Information: |
346208 (Academy of Finland Funding decision) |