University of Oulu

Pasanen, L., Holmström, L. (2017) Scale space multiresolution correlation analysis for time series data. Computational Statistics, 32 (1), 197-218. doi:10.1007/s00180-016-0670-6

Scale space multiresolution correlation analysis for time series data

Saved in:
Author: Ruha (née Pasanen), Leena1; Holmström, Lasse1
Organizations: 1Department of Mathematical Sciences, University of Oulu, Oulu, Finland
Format: article
Version: accepted version
Access: embargoed
Persistent link: http://urn.fi/urn:nbn:fi-fe201702091504
Language: English
Published: Physica-Verl, 2017
Publish Date: 2017-07-14
Description:

Abstract

We propose a new scale space method for the discovery of structure in the correlation between two time series. The method considers the possibility that correlation may not be constant in time and that it might have different features when viewed at different time scales. The time series are first decomposed into additive components corresponding to their features in different time scales. Temporal changes in correlation between pairs of such components are then explored by using weighted correlation within a sliding time window of varying length. Bayesian, sampling-based inference is used to establish the credibility of the correlation structures thus found and the results of analyses are summarized in scale space feature maps. The performance of the method is demonstrated using one artificial and two real data sets. The results underline the usefulness of the scale space approach when the correlation between the time series exhibit time-varying structure in different scales.

see all

Series: Computational statistics
ISSN: 0943-4062
ISSN-E: 1613-9658
ISSN-L: 0943-4062
Volume: 32
Issue: 1
Pages: 197 - 218
DOI: 10.1007/s00180-016-0670-6
OADOI: https://oadoi.org/10.1007/s00180-016-0670-6
Type of Publication: A1 Journal article – refereed
Field of Science: 112 Statistics and probability
Subjects: