University of Oulu

Rashad Hajimammadov, Zita Csendes, Juha-Matti Ojakoski, Gabriela Simone Lorite, Melinda Mohl, Krisztian Kordas, Nonlinear electronic transport and enhanced catalytic behavior caused by native oxides on Cu nanowires, Surface Science, Volume 663, September 2017, Pages 16-22, ISSN 0039-6028,

Nonlinear electronic transport and enhanced catalytic behavior caused by native oxides on Cu nanowires

Saved in:
Author: Hajimammadov , Rashad1; Csendes , Zita1; Ojakoski , Juha-Matti1;
Organizations: 1Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, P.O. Box 4500, 90570 Oulu, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 0.9 MB)
Persistent link:
Language: English
Published: Elsevier, 2017
Publish Date: 2019-09-01


Electrical transport properties of individual nanowires (both in axial and transversal directions) and their random networks suggest rapid oxidation when Cu is exposed to ambient conditions. The oxidation process is elucidated by thorough XRD, XPS and Raman analyzes conducted for a period of 30 days. Based on the obtained experimental data, we may conclude that first, cuprous oxide and copper hydroxide form that finally transform to cupric oxide. In electrical applications, oxidation of copper is not a true problem as long as thin films or bulk metal is concerned. However, as highlighted in our work, this is not the case for nanowires, since the oxidized surface plays quite important role in the contact formation and also in the conduction of percolated nanowire networks. On the other hand, by taking advantage of the mixed surface oxide states present on the nanowires along with their large specific surface area, we tested and found excellent catalytic activity of the oxidized nanowires in phenol oxidation, which suggests further applications of these materials in catalysis.

see all

Series: Surface science. A journal devoted to the physics and chemistry of interfaces
ISSN: 0039-6028
ISSN-E: 0039-6028
ISSN-L: 0039-6028
Volume: 663
Issue: September
Pages: 16 - 22
DOI: 10.1016/j.susc.2017.04.011
Type of Publication: A1 Journal article – refereed
Field of Science: 221 Nanotechnology
Funding: The work was partially financed by the project Suplacat (Academy of Finland). R. Hajimammadov acknowledges the funding received from the University of Oulu Graduate School, Advanced Materials Doctoral Programme.
Academy of Finland Grant Number: 277697
Detailed Information: 277697 (Academy of Finland Funding decision)
Copyright information: © 2017 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license