Dielectric properties of novel polyurethane–PZT–graphite foam composites |
|
Author: | Tolvanen, Jarkko1; Hannu, Jari1; Nelo, Mikko1; |
Organizations: |
1Microelectronics Research Unit, Department of Electrical Engineering, University of Oulu, PO Box 4500, FI-90014 University of Oulu, Finland |
Format: | article |
Version: | accepted version |
Access: | open |
Online Access: | PDF Full Text (PDF, 1.5 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe201706267468 |
Language: | English |
Published: |
IOP Publishing,
2016
|
Publish Date: | 2017-08-12 |
Description: |
AbstractFlexible foam composite materials offer multiple benefits to future electronic applications as the rapid development of the electronics industry requires smaller, more efficient, and lighter materials to further develop foldable and wearable applications. The aims of this work were to examine the electrical properties of three- and four-phase novel foam composites in different conditions, find the optimal mixture for four-phase foam composites, and study the combined effects of lead zirconate titanate (PZT) and graphite fillers. The flexible and highly compressible foams were prepared in a room-temperature mixing process using polyurethane, PZT, and graphite components as well as their combinations, in which air acted as one phase. In three-phase foams the amount of PZT varied between 20 and 80 wt% and the amount of graphite, between 1 and 15 wt%. The four-phase foams were formed by adding 40 wt% of PZT while the amount of graphite ranged between 1 and 15 wt%. The presented results and materials could be utilized to develop new flexible and soft sensor applications by means of material technology. see all
|
Series: |
Smart materials & structures |
ISSN: | 0964-1726 |
ISSN-E: | 1361-665X |
ISSN-L: | 0964-1726 |
Volume: | 25 |
Issue: | 9 |
Article number: | 095039 |
DOI: | 10.1088/0964-1726/25/9/095039 |
OADOI: | https://oadoi.org/10.1088/0964-1726/25/9/095039 |
Type of Publication: |
A1 Journal article – refereed |
Field of Science: |
216 Materials engineering 213 Electronic, automation and communications engineering, electronics |
Subjects: | |
Funding: |
This study was supported by the Piling of Printed Intelligence project funded by the Finnish Agency for Technology and Innovation (TEKES) and the Tactile project supported by the Faculty of Information and Electrical Engineering of the University of Oulu. |
Copyright information: |
© Copyright 2017 IOP Publishing. Published in this repository with the kind permission of the publisher. |