University of Oulu

Koivumäki T, Pekkarinen S, Lappi M, Väisänen J, Juntunen J, Pikkarainen M. Consumer Adoption of Future MyData-Based Preventive eHealth Services: An Acceptance Model and Survey Study. J Med Internet Res 2017;19(12):e429. DOI: 10.2196/jmir.7821. PMID: 29273574. PMCID: 5756317

Consumer adoption of future MyData-based preventive eHealth services : an acceptance model and survey study

Saved in:
Author: Koivumäki, Timo1,2; Pekkarinen, Saara3; Lappi, Minna3;
Organizations: 1Martti Ahtisaari Institute, Oulu Business School, University of Oulu
2VTT Technical Research Centre of Finland
3Department of Marketing, Oulu Business School, University of Oulu
4Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 1 MB)
Persistent link:
Language: English
Published: JMIR Publications, 2017
Publish Date: 2018-02-07


Background: Constantly increasing health care costs have led countries and health care providers to the point where health care systems must be reinvented. Consequently, electronic health (eHealth) has recently received a great deal of attention in social sciences in the domain of Internet studies. However, only a fraction of these studies focuses on the acceptability of eHealth, making consumers’ subjective evaluation an understudied field. This study will address this gap by focusing on the acceptance of MyData-based preventive eHealth services from the consumer point of view. We are adopting the term "MyData", which according to a White Paper of the Finnish Ministry of Transport and Communication refers to "1) a new approach, a paradigm shift in personal data management and processing that seeks to transform the current organization centric system to a human centric system, 2) to personal data as a resource that the individual can access and control."

Objective: The aim of this study was to investigate what factors influence consumers’ intentions to use a MyData-based preventive eHealth service before use.

Methods: We applied a new adoption model combining Venkatesh’s unified theory of acceptance and use of technology 2 (UTAUT2) in a consumer context and three constructs from health behavior theories, namely threat appraisals, self-efficacy, and perceived barriers. To test the research model, we applied structural equation modeling (SEM) with Mplus software, version 7.4. A Web-based survey was administered. We collected 855 responses.

Results: We first applied traditional SEM for the research model, which was not statistically significant. We then tested for possible heterogeneity in the data by running a mixture analysis. We found that heterogeneity was not the cause for the poor performance of the research model. Thus, we moved on to model-generating SEM and ended up with a statistically significant empirical model (root mean square error of approximation [RMSEA] 0.051, Tucker-Lewis index [TLI] 0.906, comparative fit index [CFI] 0.915, and standardized root mean square residual 0.062). According to our empirical model, the statistically significant drivers for behavioral intention were effort expectancy (beta=.191, P<.001), self-efficacy (beta=.449, P<.001), threat appraisals (beta=.416, P<.001), and perceived barriers (beta=−.212, P=.009).

Conclusions: Our research highlighted the importance of health-related factors when it comes to eHealth technology adoption in the consumer context. Emphasis should especially be placed on efforts to increase consumers’ self-efficacy in eHealth technology use and in supporting healthy behavior.

see all

Series: Journal of medical internet research
ISSN: 1438-8871
ISSN-E: 1438-8871
ISSN-L: 1438-8871
Volume: 19
Issue: 12
Article number: e429
DOI: 10.2196/jmir.7821
Type of Publication: A1 Journal article – refereed
Field of Science: 512 Business and management
217 Medical engineering
113 Computer and information sciences
Funding: The study was carried out as a part of the DHR project, funded by Tekes—the Finnish Funding Agency for Innovation.
Copyright information: ©Timo Koivumäki, Saara Pekkarinen, Minna Lappi, Jere Väisänen, Jouni Juntunen, Minna Pikkarainen. Originally published in the Journal of Medical Internet Research (, 22.12.2017. This is an open-access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on, as well as this copyright and license information must be included.