University of Oulu

Distribution of PEG-coated hollow polyelectrolyte microcapsules after introduction into the circulatory system and muscles of zebrafish Ekaterina Borvinskaya, Anton Gurkov, Ekaterina Shchapova, Boris Baduev, Igor Meglinski, Maxim Timofeyev Biology Open 2018 7: bio030015 doi: 10.1242/bio.030015 Published 5 January 2018

Distribution of PEG-coated hollow polyelectrolyte microcapsules after introduction into the circulatory system and muscles of zebrafish

Saved in:
Author: Borvinskaya, Ekaterina1,2; Gurkov, Anton1,3; Shchapova, Ekaterina1;
Organizations: 1Institute of Biology at Irkutsk State University, Irkutsk 664003, Russia
2Institute of Biology at Karelian Research Centre of Russian Academy of Sciences, Petrozavodsk 185035, Russia
3Baikal Research Centre, Irkutsk 664003, Russia
4University of Oulu, Optoelectronics and Measurement Techniques Laboratory, Oulu 90570, Finland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 3.6 MB)
Persistent link:
Language: English
Published: Company of Biologists, 2018
Publish Date: 2018-03-14


The use of polyelectrolyte multilayer microcapsules as carriers for fluorescent molecular probes is a prospective technique for monitoring the physiological characteristics of animal vasculature and interstitial environment in vivo. Polyelectrolyte microcapsules have many features that favor their use as implantable carriers of optical sensors, but little information is available on their interactions with complex living tissues, distribution or residence time following different routes of administration in the body of vertebrates. Using the common fish model, the zebrafish Danio rerio, we studied in vivo the distribution of non-biodegradable microcapsules covered with polyethylene glycol (PEG) over time in the adults and evaluated potential side effects of their delivery into the fish bloodstream and muscles. Fluorescent microcapsules administered into the bloodstream and interstitially (in concentrations that were sufficient for visualization and spectral signal recording) both showed negligible acute toxicity to the fishes during three weeks of observation. The distribution pattern of microcapsules delivered into the bloodstream was stable for at least one week, with microcapsules prevalent in capillaries-rich organs. However, after intramuscular injection, the phagocytosis of the microcapsules by immune cells was manifested, indicating considerable immunogenicity of the microcapsules despite PEG coverage. The long-term negative effects of chronic inflammation were also investigated in fish muscles by histological analysis.

see all

Series: Biology open
ISSN: 2046-6390
ISSN-E: 2046-6390
ISSN-L: 2046-6390
Volume: 7
Article number: bio030015
DOI: 10.1242/bio.030015
Type of Publication: A1 Journal article – refereed
Field of Science: 1182 Biochemistry, cell and molecular biology
Funding: The study was supported by the Russian Science Foundation (#15-14-10008).
Copyright information: © 2018. Published by The Company of Biologists Ltd This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.