University of Oulu

Yao H, Wen J-B, Xiong Y, Lu Y and Huttula M (2018) Microstructure Evolution in Mg-Zn-Zr-Gd Biodegradable Alloy: The Decisive Bridge Between Extrusion Temperature and Performance. Front. Chem. 6:71. doi: 10.3389/fchem.2018.00071

Microstructure evolution in Mg-Zn-Zr-Gd biodegradable alloy : the decisive bridge between extrusion temperature and performance

Saved in:
Author: Yao, Huai1,2; Wen, Jiu-Ba1,2; Xiong, Yi1,2;
Organizations: 1School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang Henan, China
2Collaborative Innovation Center of Nonferrous Metals of Henan Province, Luoyang Henan, China
3Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 4.5 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe201804136544
Language: English
Published: Frontiers Media, 2018
Publish Date: 2018-04-13
Description:

Abstract

Being a biocompatible metal with similar mechanical properties as bones, magnesium bears both biodegradability suitable for bone substitution and chemical reactivity detrimental in bio-ambiences. To benefit its biomaterial applications, we developed Mg-2.0Zn-0.5Zr-3.0Gd (wt%) alloy through hot extrusion and tailored its biodegradability by just varying the extrusion temperatures during alloy preparations. The as-cast alloy is composed of the α-Mg matrix, a network of the fish-bone shaped and ellipsoidal (Mg, Zn)₃Gd phase, and a lamellar long period stacking ordered phase. Surface content of dynamically recrystallized (DRXed) and large deformed grains increases within 330–350°C of the extrusion temperature, and decreases within 350–370°C. Sample second phase contains the (Mg, Zn)₃Gd nano-rods parallel to the extrusion direction, and Mg₂Zn₁₁ nanoprecipitation when temperature tuned above 350°C. Refining microstructures leads to different anticorrosive ability of the alloys as given by immersion and electrochemical corrosion tests in the simulated body fluids. The sample extruded at 350°C owns the best anticorrosive ability thanks to structural impacts where large DRXed portions and uniform nanosized grains reduce chemical potentials among composites, and passivate the extruded surfaces. Besides materials applications, the in vitro mechanism revealed here is hoped to inspire similar researches in biometal developments.

see all

Series: Frontiers in chemistry
ISSN: 2296-2646
ISSN-E: 2296-2646
ISSN-L: 2296-2646
Volume: 6
Article number: 71
DOI: 10.3389/fchem.2018.00071
OADOI: https://oadoi.org/10.3389/fchem.2018.00071
Type of Publication: A1 Journal article – refereed
Field of Science: 116 Chemical sciences
Subjects:
Funding: This work was supported by the Henan New Nonferrous Metal Materials University Science and Technology Innovation Team Support Program of China (2012IRTSTHN008), the Program for Science, Technology Innovation Talents in Universities of the Henan Province (17HASTIT026), the Science and Technology Project of the Henan Province (152102210077), Education Department of theHenan Province (16A430005), and the Science and Technology Innovation Team of the Henan University of Science and Technology (2015XTD006).
Copyright information: © 2018 Yao, Wen, Xiong, Lu and Huttula. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
  https://creativecommons.org/licenses/by/4.0/