University of Oulu

M. Majidzadeh, A. Moilanen, N. Tervo, H. Pennanen, A. Tölli and M. Latva-aho, "Hybrid beamforming for single-user MIMO with partially connected RF architecture," 2017 European Conference on Networks and Communications (EuCNC), Oulu, 2017, pp. 1-6. doi: 10.1109/EuCNC.2017.7980696

Hybrid beamforming for single-user MIMO with partially connected RF architecture

Saved in:
Author: Majidzadeh, Mohammad1; Moilanen, Aleksi1; Tervo, Nuutti1;
Organizations: 1Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 0.2 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2018080233294
Language: English
Published: Institute of Electrical and Electronics Engineers, 2017
Publish Date: 2018-08-02
Description:

Abstract

Hybrid analog-digital beamforming has been recognized as a promising solution for a practical implementation of massive multiple-input multiple-output (MIMO) systems based on millimeter-wave technology. In this paper, three hybrid beamforming algorithms are proposed for single-user MIMO systems with partially connected radio frequency (RF) architecture, including a singular value decomposition (SVD) matching algorithm, an iterative orthogonalization algorithm, and a transmit-receive zero forcing (ZF) algorithm. The rate performance of the proposed algorithms is compared with fully digital and analog beamforming in a realistic geometry-based stochastic channel model. The simulation results show that the transmit-receive ZF is superior among hybrid methods, and it provides performance relatively close to that of the digital beamforming. In conclusion, carefully designed partially connected hybrid beamforming can obtain an excellent balance between hardware complexity and performance.

see all

ISBN: 978-1-5386-3873-6
ISBN Print: 978-1-5386-3874-3
Pages: 1 - 6
DOI: 10.1109/EuCNC.2017.7980696
OADOI: https://oadoi.org/10.1109/EuCNC.2017.7980696
Host publication: 2017 European Conference on Networks and Communications (EuCNC), 12-15 June 2017, Oulu, Finland : 5G - European Roadmap, Global Impact
Conference: European Conference on Networks and Communications
Type of Publication: A4 Article in conference proceedings
Field of Science: 213 Electronic, automation and communications engineering, electronics
Subjects:
Funding: This research has been supported by Bittium, Huawei, Keysight, Kyynel, MediaTek, Nokia, and Finnish Funding Agency for Technology and Innovation (Tekes) under 5Gto10G and High5 projects. It has been also supported by the Academy of Finland via grant number 307492.
Academy of Finland Grant Number: 307492
Detailed Information: 307492 (Academy of Finland Funding decision)
Copyright information: © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.