Reinforcement learning system to mitigate small-cell interference through directionality |
|
Author: | Paatelma, Anton1; Nguyen, Danh H.2; Saarnisaari, Harri1; |
Organizations: |
1CWC, University of Oulu, Finland 2Drexel University, Philadelphia, PA |
Format: | article |
Version: | accepted version |
Access: | open |
Online Access: | PDF Full Text (PDF, 1.8 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe2018091235470 |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers,
2017
|
Publish Date: | 2018-08-07 |
Description: |
AbstractBeam-steering techniques using directional antennas are expected to play an important role in wireless network capacity expansion through ubiquitous small-cell deployment. However, integrating directional antennas into the existing wireless PHY and MAC stack of small cells has been challenging due to the added protocol overhead and lack of a robust antenna beam selection technique that can adapt well to environmental changes. This paper presents the design, implementation, and evaluation of LinkPursuit, a novel learning protocol for distributed antenna state selection in directional small-cell networks. LinkPursuit relies on reconfigurable antennas and a synchronous TimeDivision Multiple Access (TDMA) MAC to achieve simultaneous directional transmission and reception. Further, the system employs a practical antenna selection protocol based on the well known adaptive pursuit algorithm from the reinforcement learning literature. We implement a realtime prototype of LinkPursuit on the WARP platform and conduct extensive experiments to evaluate its performance. The empirical results show that appropriate use of directionality in LinkPursuit can result in higher network sum rates than omnidirectional transmission under various degrees of cross-link interference. see all
|
Series: |
IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications workshops |
ISSN: | 2166-9570 |
ISSN-E: | 2166-9589 |
ISSN-L: | 2166-9570 |
ISBN: | 978-1-5386-3531-5 |
ISBN Print: | 978-1-5386-3529-2 |
Pages: | 1 - 7 |
DOI: | 10.1109/PIMRC.2017.8292393 |
OADOI: | https://oadoi.org/10.1109/PIMRC.2017.8292393 |
Host publication: |
2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) |
Conference: |
Annual International Symposium on Personal, Indoor and Mobile Radio Communications |
Type of Publication: |
A4 Article in conference proceedings |
Field of Science: |
213 Electronic, automation and communications engineering, electronics |
Subjects: | |
Funding: |
This work was supported by NSF under Grant No. 1457306 and Tekes under Grant Dnro 2336/31/2014. |
Copyright information: |
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |