University of Oulu

Postberg, F., Khawaja, N., Abel, B., Choblet, G., Glein, C., Gudipati, M., Henderson, B., Hsu, H., Kempf, S., Klenner, F., Moragas-Klostermeyer, G., Magee, B., Nölle, L., Perry, M., Reviol, R., Schmidt, J., Srama, R., Stolz, F., Tobie, G., Trieloff, M., Waite, J. (2018) Macromolecular organic compounds from the depths of Enceladus. Nature, 558 (7711), 564-568.

Macromolecular organic compounds from the depths of Enceladus

Saved in:
Author: Postberg, Frank1,2,3; Khawaja, Nozair1; Abel, Bernd4;
Organizations: 1Institut für Geowissenschaften, Universität Heidelberg, Heidelberg, Germany
2Klaus-Tschira-Labor für Kosmochemie, Universität Heidelberg, Heidelberg, Germany
3Institut für Geologische Wissenschaften, Freie Universität Berlin, Berlin, Germany
4Leibniz-Institute für Oberflächenmodifizierung (IOM), Leipzig, Germany
5Laboratoire de Planétologie et Géodynamique, UMR-CNRS 6112, Université de Nantes, Nantes, France
6Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA
7Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
8Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
9Institut für Raumfahrtsysteme, Universität Stuttgart, Stuttgart, Germany
10Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
11Astronomy Research Unit, University of Oulu, Oulu, Finland
12Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Leipzig, Germany
Format: article
Version: accepted version
Access: embargoed
Persistent link:
Language: English
Published: Springer Nature, 2018
Publish Date: 2018-12-27


Saturn’s moon Enceladus harbours a global water ocean¹, which lies under an ice crust and above a rocky core². Through warm cracks in the crust³ a cryo-volcanic plume ejects ice grains and vapour into space⁴⁷ that contain materials originating from the ocean⁸,⁹. Hydrothermal activity is suspected to occur deep inside the porous core¹⁰¹², powered by tidal dissipation¹³. So far, only simple organic compounds with molecular masses mostly below 50 atomic mass units have been observed in plume material⁶,¹⁴,¹⁵. Here we report observations of emitted ice grains containing concentrated and complex macromolecular organic material with molecular masses above 200 atomic mass units. The data constrain the macromolecular structure of organics detected in the ice grains and suggest the presence of a thin organic-rich film on top of the oceanic water table, where organic nucleation cores generated by the bursting of bubbles allow the probing of Enceladus’ organic inventory in enhanced concentrations.

see all

Series: Nature
ISSN: 0028-0836
ISSN-E: 1476-4687
ISSN-L: 0028-0836
Volume: 558
Issue: 7711
Pages: 564 - 568
DOI: 10.1038/s41586-018-0246-4
Type of Publication: A1 Journal article – refereed
Field of Science: 115 Astronomy and space science
Funding: The research leading to these results received financial support from German Research Foundation (DFG) projects PO 1015/2-1, /3-1, /4-1 and ERC Consolidator Grant 724908—Habitat-OASIS (F.P., N.K, L.N., F.K. and R.R.), AB 63/9-1 (B.A. and F.S.), the Klaus Tschira Stiftung (M.T. and F.P.), NASA contract NAS703001TONMO71123, JPL subcontract 1405853 (J.H.W., C.R.G and B.M.), INMS science support grant NNX13AG63G (M.P.), NASA Habitable Worlds Program and JPL’s RTD funding (M.S.G. and B.L.H.) and Academy of Finland project 298571 (J.S.).
Academy of Finland Grant Number: 298571
Detailed Information: 298571 (Academy of Finland Funding decision)
Copyright information: © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. This is a post-peer-review, pre-copyedit version of an article published in Nature. The final authenticated version is available online at: