Macromolecular organic compounds from the depths of Enceladus |
|
Author: | Postberg, Frank1,2,3; Khawaja, Nozair1; Abel, Bernd4; |
Organizations: |
1Institut für Geowissenschaften, Universität Heidelberg, Heidelberg, Germany 2Klaus-Tschira-Labor für Kosmochemie, Universität Heidelberg, Heidelberg, Germany 3Institut für Geologische Wissenschaften, Freie Universität Berlin, Berlin, Germany
4Leibniz-Institute für Oberflächenmodifizierung (IOM), Leipzig, Germany
5Laboratoire de Planétologie et Géodynamique, UMR-CNRS 6112, Université de Nantes, Nantes, France 6Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA 7Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 8Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA 9Institut für Raumfahrtsysteme, Universität Stuttgart, Stuttgart, Germany 10Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA 11Astronomy Research Unit, University of Oulu, Oulu, Finland 12Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Leipzig, Germany |
Format: | article |
Version: | accepted version |
Access: | open |
Online Access: | PDF Full Text (PDF, 10.3 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe2018092536532 |
Language: | English |
Published: |
Springer Nature,
2018
|
Publish Date: | 2018-12-27 |
Description: |
AbstractSaturn’s moon Enceladus harbours a global water ocean¹, which lies under an ice crust and above a rocky core². Through warm cracks in the crust³ a cryo-volcanic plume ejects ice grains and vapour into space⁴–⁷ that contain materials originating from the ocean⁸,⁹. Hydrothermal activity is suspected to occur deep inside the porous core¹⁰–¹², powered by tidal dissipation¹³. So far, only simple organic compounds with molecular masses mostly below 50 atomic mass units have been observed in plume material⁶,¹⁴,¹⁵. Here we report observations of emitted ice grains containing concentrated and complex macromolecular organic material with molecular masses above 200 atomic mass units. The data constrain the macromolecular structure of organics detected in the ice grains and suggest the presence of a thin organic-rich film on top of the oceanic water table, where organic nucleation cores generated by the bursting of bubbles allow the probing of Enceladus’ organic inventory in enhanced concentrations. see all
|
Series: |
Nature |
ISSN: | 0028-0836 |
ISSN-E: | 1476-4687 |
ISSN-L: | 0028-0836 |
Volume: | 558 |
Issue: | 7711 |
Pages: | 564 - 568 |
DOI: | 10.1038/s41586-018-0246-4 |
OADOI: | https://oadoi.org/10.1038/s41586-018-0246-4 |
Type of Publication: |
A1 Journal article – refereed |
Field of Science: |
115 Astronomy and space science |
Subjects: | |
Funding: |
The research leading to these results received financial support from German Research Foundation (DFG) projects PO 1015/2-1, /3-1, /4-1 and ERC Consolidator Grant 724908—Habitat-OASIS (F.P., N.K, L.N., F.K. and R.R.), AB 63/9-1 (B.A. and F.S.), the Klaus Tschira Stiftung (M.T. and F.P.), NASA contract NAS703001TONMO71123, JPL subcontract 1405853 (J.H.W., C.R.G and B.M.), INMS science support grant NNX13AG63G (M.P.), NASA Habitable Worlds Program and JPL’s RTD funding (M.S.G. and B.L.H.) and Academy of Finland project 298571 (J.S.). |
Academy of Finland Grant Number: |
298571 |
Detailed Information: |
298571 (Academy of Finland Funding decision) |
Copyright information: |
© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. This is a post-peer-review, pre-copyedit version of an article published in Nature. The final authenticated version is available online at: http://dx.doi.org/10.1038/s41586-018-0246-4. |