Strain hardening polypropylene fiber reinforced composite from hydrated ladle slag and gypsum |
|
Author: | Nguyen, Hoang1; Kinnunen, Päivö1; Carvelli, Valter2; |
Organizations: |
1Fibre and Particle Engineering Research Unit, University of Oulu, Pentti Kaiteran katu 1, 90014, Oulu, Finland 2Department A.B.C., Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133, Milan, Italy |
Format: | article |
Version: | published version |
Access: | open |
Online Access: | PDF Full Text (PDF, 2.6 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe2018101238184 |
Language: | English |
Published: |
Elsevier,
2019
|
Publish Date: | 2018-10-12 |
Description: |
AbstractThe use of industrial by-products brings both economic and environmental benefits. Ladle slag (LS) from steel processes is a promising raw material and has been used as a precursor in a few studies. To better understand the benefits of LS mainly on mechanical behavior, in this investigation, an ettringite-based binder was produced from the hydration between LS and gypsum. The material was reinforced with 2% v/v high tenacity polypropylene (HTPP) fiber to attain a high performance fiber reinforced cementitious composite with pseudo strain hardening (PSH) behavior. In addition, results of FEM numerical analysis show the accurateness of an available constitutive model in predicting the mechanical response of the HTPP fiber reinforced hydrated LS composite. Additionally, the experimental results reveal that using HTPP fiber greatly enhanced the mechanical properties of the hydrated LS. Moreover, PSH behavior and eventually multiple fine cracks were recorded by the digital image correlation (DIC) technique under uniaxial tensile tests. The numerical simulations show the capability of the concrete damage plasticity (CDP) model to predict the nonlinear behavior of the material with a good agreement between experimental and numerical predictions. see all
|
Series: |
Composites. Part B, Engineering |
ISSN: | 1359-8368 |
ISSN-E: | 1879-1069 |
ISSN-L: | 1359-8368 |
Volume: | 158 |
Pages: | 328 - 338 |
DOI: | 10.1016/j.compositesb.2018.09.056 |
OADOI: | https://oadoi.org/10.1016/j.compositesb.2018.09.056 |
Type of Publication: |
A1 Journal article – refereed |
Field of Science: |
212 Civil and construction engineering |
Subjects: | |
Funding: |
This work was supported by MINSI project [grant number: A70189] under the European Regional Development Fund, European Union. |
Copyright information: |
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/). |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |