University of Oulu

del Peral-Rosado, J.A.; Saloranta, J.; Destino, G.; López-Salcedo, J.A.; Seco-Granados, G. Methodology for Simulating 5G and GNSS High-Accuracy Positioning. Sensors 2018, 18, 3220

Methodology for simulating 5G and GNSS high-accuracy positioning

Saved in:
Author: del Peral-Rosado, José A.1; Saloranta, Jani2; Destino, Giuseppe2,3;
Organizations: 1Department of Telecommunications and Systems Engineering, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
2Centre for Wireless Communications, University of Oulu, 90014 Oulu, Finland
3Centre for Telecommunication Research, King’s College London, London WC2 R2LF, UK
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 1.2 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2018103039072
Language: English
Published: Multidisciplinary Digital Publishing Institute, 2018
Publish Date: 2018-10-30
Description:

Abstract

This paper focuses on the exploitation of fifth generation (5G) centimetre-wave (cmWave) and millimetre-wave (mmWave) transmissions for high-accuracy positioning, in order to complement the availability of Global Navigation Satellite Systems (GNSS) in harsh environments, such as urban canyons. Our goal is to present a representative methodology to simulate and assess their hybrid positioning capabilities over outdoor urban, suburban and rural scenarios. A novel scenario definition is proposed to integrate the network density of 5G deployments with the visibility masks of GNSS satellites, which helps to generate correlated scenarios of both technologies. Then, a generic and representative modeling of the 5G and GNSS observables is presented for snapshot positioning, which is suitable for standard protocols. The simulations results indicate that GNSS drives the achievable accuracy of its hybridisation with 5G cmWave, because non-line-of-sight (NLoS) conditions can limit the cmWave localization accuracy to around 20 m. The 5G performance is significantly improved with the use of mmWave positioning with dominant line-of-sight (LoS) conditions, which can even achieve sub-meter localization with one or more base stations. Therefore, these results show that NLoS conditions need to be weighted in 5G localization, in order to complement and outperform GNSS positioning over urban environments.

see all

Series: Sensors
ISSN: 1424-8220
ISSN-E: 1424-8220
ISSN-L: 1424-8220
Volume: 18
Issue: 10
Article number: 3220
DOI: 10.3390/s18103220
OADOI: https://oadoi.org/10.3390/s18103220
Type of Publication: A1 Journal article – refereed
Field of Science: 213 Electronic, automation and communications engineering, electronics
Subjects:
Funding: This research was partially funded by the Spanish Ministry of Science and Innovation Project under grant TEC2017-89925-R.
Copyright information: © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
  https://creativecommons.org/licenses/by/4.0/