University of Oulu

S. Hosseini and B. Turhan, "An Exploratory Study of Search Based Training Data Selection for Cross Project Defect Prediction," 2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Prague, 2018, pp. 244-251. doi: 10.1109/SEAA.2018.00048

An exploratory study of search based training data selection for cross project defect prediction

Saved in:
Author: Hosseini, Seyedrebvar1; Turhan , Burak2
Organizations: 1M3S, Faculty of IT and Electrical Engineering University of Oulu
2Department of Computer Science Brunel University
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 0.8 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2018121250585
Language: English
Published: Institute of Electrical and Electronics Engineers, 2018
Publish Date: 2018-12-12
Description:

Abstract

Context: Search based approaches are gaining attention in cross project defect prediction (CPDP). The complexity of such approaches and existence of various design decisions are important issues to consider. Objective: We aim at investigating factors that can affect the performance of search based selection (SBS) approaches. We study a genetic instance selection approach (GIS) and present an evaluation of design options for search based CPDP. Method: Using an exploratory approach, data from different options of models are gathered and analyzed through ANOVA tests and effect sizes. Results: Both feature sets and validation dataset selection options show small or insignificant impacts on F-measure and precision, unlike the more affected false positive and true negative rates. Size of training data does not seem to be related to significant changes in F-measure and precision and high variability in performance are discouraging evidence for using larger datasets. Fitness function is one of the major factors that impact performance with much larger effect than the choice of validation dataset. Finally, while showing slight impacts, data label changes do not seem to be the top contributor to performance. Conclusions: We conclude that exploratory approaches can be effective for making design decisions in constructing search based CPDP models. Effect of individual tuned learners and their interaction with other affecting parameters and more in depth study of quality affecting factors guided by label changes are directions to investigate.

see all

ISBN: 978-1-5386-7383-6
ISBN Print: 978-1-5386-7384-3
Pages: 244 - 251
DOI: 10.1109/SEAA.2018.00048
OADOI: https://oadoi.org/10.1109/SEAA.2018.00048
Host publication: 2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)
Host publication editor: Bures, Tomas
Angelis, Lefteris
Conference: Euromicro Conference on Software Engineering and Advanced Applications (SEAA)
Type of Publication: A4 Article in conference proceedings
Field of Science: 113 Computer and information sciences
Subjects:
Copyright information: © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.