Leaf-structure patterning for antireflective and self-cleaning surfaces on Si-based solar cells |
|
Author: | Huang, Zhongjia1,2; Cai, Congcong1; Kuai, Long; |
Organizations: |
1School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China 2Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, FIN-90014 Oulu, Finland |
Format: | article |
Version: | accepted version |
Access: | open |
Online Access: | PDF Full Text (PDF, 1.8 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe201901303482 |
Language: | English |
Published: |
Elsevier,
2018
|
Publish Date: | 2019-11-23 |
Description: |
AbstractAs the naturally evolved sunlight harvester, plant foliage is gifted with dedicated air-leaf interfaces countering light reflections and ambient ruins, yet offering antireflective and self-cleaning prototypes for manmade photovoltaics. In this work, we report on an ecological and bio-inspired coating strategy by replicating leaf structures onto Si-based solar cells. Transparent photopolymer with leaf surface morphologies was tightly cured on Si slabs through a facile double transfer process. After bio-mimicked layer coverages, sunlight reflection drops substantially from more than 35% down to less than 20% once lotus leaf was employed as the master. Consequentially, 10.9% gain of the maximum powers of the photovoltaic is obtained. The leaf replicas inherited their masters’ hydrophobicity which is resistant to acidic and basic conditions. Physically adhered dusts are easily removed by water rolling. Lightwave guidance mechanism among air-polymer-Si interfaces is explicated through optical simulations, while wettability through the morphological impacts on hydrophobic states. Taking advantages of varieties of foliage species and surface structures, the work is hoped to boost large-scale industrial designs and realizations of the bionic antireflective and superhydrophobic coating on future solar cells. see all
|
Series: |
Solar energy |
ISSN: | 0038-092X |
ISSN-E: | 1471-1257 |
ISSN-L: | 0038-092X |
Volume: | 159 |
Pages: | 733 - 741 |
DOI: | 10.1016/j.solener.2017.11.020 |
OADOI: | https://oadoi.org/10.1016/j.solener.2017.11.020 |
Type of Publication: |
A1 Journal article – refereed |
Field of Science: |
216 Materials engineering |
Subjects: | |
Funding: |
This work is financially supported by the National Natural Science Foundation of China (Grant No. 51205001), and Anhui Polytechnic University (No. 2016BJRC005). The Strategic Grant of Oulu University, and the European Union Regional Development Foundation and Oulu Council. The work is also partially supported by Provincial Natural Science Foundation of Hunan, China (2015JJ2138). |
Copyright information: |
© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |