University of Oulu

E. Dosti, M. Shehab, H. Alves and M. Latva-aho, "Ultra reliable communication via CC-HARQ in finite block-length," 2017 European Conference on Networks and Communications (EuCNC), Oulu, 2017, pp. 1-5. doi: 10.1109/EuCNC.2017.7980708

Ultra reliable communication via CC-HARQ in finite block-length

Saved in:
Author: Dosti, Endrit1; Shehab, Mohammad1; Alves, Hirley1;
Organizations: 1Centre for Wireless Communications (CWC), University of Oulu, 90014 Oulu, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 1.4 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe201902144965
Language: English
Published: Institute of Electrical and Electronics Engineers, 2017
Publish Date: 2019-02-14
Description:

Abstract

In this paper, we suggest a power allocation strategy for the Chase Combining Hybrid Automatic Repeat Request (CC-HARQ) protocol with ultra-reliability constraints. The proposed optimal power allocation scheme would allow us to reach any outage probability target in the finite block-length regime. We cast an optimization problem as minimization of the average transmitted power under a given outage probability and maximum transmit power constraint. To solve the problem and attain the closed form solution, we utilize the Karush-Kuhn-Tucker (KKT) conditions. We show that in the finite block-length regime the transmitted power is highly dependent on the number of channel uses. However, as the block size increases, the transmitted power becomes constant. Furthermore, we show that by using the proposed power allocation scheme, we can achieve very large average and sum power gains when compared to the one shot transmission.

see all

ISBN: 978-1-5386-3873-6
ISBN Print: 978-1-5386-3874-3
Pages: 1 - 5
DOI: 10.1109/EuCNC.2017.7980708
OADOI: https://oadoi.org/10.1109/EuCNC.2017.7980708
Host publication: 2017 European Conference on Networks and Communications (EuCNC), 12-15 June 2017, Oulu, Finland : 5G - European Roadmap, Global Impact
Conference: European Conference on Networks and Communications (EuCNC)
Type of Publication: A4 Article in conference proceedings
Field of Science: 213 Electronic, automation and communications engineering, electronics
Subjects:
Funding: This work has been partially supported by Finnish Funding Agency for Technology and Innovation (Tekes), Huawei Technologies, Nokia and Anite Telecoms, and Academy of Finland (under Grant no. 307492).
Academy of Finland Grant Number: 307492
Detailed Information: 307492 (Academy of Finland Funding decision)
Copyright information: © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.