Deep binary representation of facial expressions : a novel framework for automatic pain intensity recognition |
|
Author: | Tavakolian, Mohammad1; Hadid, Abdenour1 |
Organizations: |
1Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Finland |
Format: | article |
Version: | accepted version |
Access: | open |
Online Access: | PDF Full Text (PDF, 1.7 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe201902266255 |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers,
2018
|
Publish Date: | 2019-02-26 |
Description: |
AbstractAutomatic pain assessment is crucial in clinical diagnosis. Experiencing pain causes deformations in the facial structure resulting in different spontaneous facial expressions. In this paper, we aim to represent the facial expressions as a compact binary code for classification of different pain intensity levels. We divide a given face video into non-overlapping equal-length segments. Using a Convolutional Neural Network (CNN), we extract features from randomly sampled frames from all segments. The obtained features are aggregated by exploiting statistics to incorporate low-level visual patterns and high-level structural information. Finally, this processed information is encoded using a deep network to obtain a single binary code such that videos with the same pain intensity level have smaller Hamming distance than those of different levels. Extensive experiments on the publicly available UNBC-McMaster database demonstrates that our proposed method achieves superior performance compared to the state-of-the-art. see all
|
Series: |
IEEE International Conference on Image Processing |
ISSN: | 1522-4880 |
ISSN-E: | 2381-8549 |
ISSN-L: | 1522-4880 |
ISBN: | 978-1-4799-7061-2 |
ISBN Print: | 978-1-4799-7062-9 |
Pages: | 1952 - 1956 |
DOI: | 10.1109/ICIP.2018.8451681 |
OADOI: | https://oadoi.org/10.1109/ICIP.2018.8451681 |
Host publication: |
2018 25th IEEE International Conference on Image Processing (ICIP) |
Conference: |
IEEE International Conference on Image Processing |
Type of Publication: |
A4 Article in conference proceedings |
Field of Science: |
113 Computer and information sciences 213 Electronic, automation and communications engineering, electronics |
Subjects: | |
Funding: |
The financial support of the Academy of Finland and Infotech Oulu is acknowledged. |
Copyright information: |
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |