Reliable positioning and mmWave communication via multi-point connectivity |
|
Author: | Kumar, Dileep1; Saloranta, Jani1; Kaleva, Jarkko1; |
Organizations: |
1Centre for Wireless Communications, University of Oulu, 90014 Oulu, Finland 2Centre for Telecommunication Research, King’s College London, London WC2 R2LF, UK |
Format: | article |
Version: | published version |
Access: | open |
Online Access: | PDF Full Text (PDF, 1 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe201902286516 |
Language: | English |
Published: |
Multidisciplinary Digital Publishing Institute,
2018
|
Publish Date: | 2019-02-28 |
Description: |
AbstractOne of the key elements of future 5G and beyond mobile technology is millimeter-wave (mmWave) communications, which is targeted to extreme high-data rate services. Furthermore, combining the possibility of a wideband signal transmission with the capability of pencil-beamforming, mmWave technology is key for accurate cellular-based positioning. However, it is also well-known that at the mmWave frequency band the radio channel is very sensitive to line-of-sight blockages giving rise to unstable connectivity and inefficient communication. In this paper, we tackle the blockage problem and propose a solution to increase the communication reliability by means of a coordinated multi-point reception. We also investigate the advantage of this solution in terms of positioning quality. More specifically, we describe a robust hybrid analog–digital receive beamforming strategy to combat the unavailability of dominant links. Numerical examples are provided to validate the efficiency of our proposed method. see all
|
Series: |
Sensors |
ISSN: | 1424-8220 |
ISSN-E: | 1424-8220 |
ISSN-L: | 1424-8220 |
Volume: | 18 |
Issue: | 11 |
Article number: | 4001 |
DOI: | 10.3390/s18114001 |
OADOI: | https://oadoi.org/10.3390/s18114001 |
Type of Publication: |
A1 Journal article – refereed |
Field of Science: |
213 Electronic, automation and communications engineering, electronics |
Subjects: | |
Funding: |
The research leading to these results received funding from the Academy of Finland projects: Positioning-aided Reliably-connected Industrial Systems with Mobile mmWave Access (PRISMA) and supported by Academy of Finland 6Genesis Flagship (grant 318927). |
Academy of Finland Grant Number: |
318927 |
Detailed Information: |
318927 (Academy of Finland Funding decision) |
Copyright information: |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
https://creativecommons.org/licenses/by/4.0/ |