University of Oulu

Luo, C., Visuri, A., Klakegg, S. et al. Pers Ubiquit Comput (2019) 23: 159. https://doi.org/10.1007/s00779-018-01190-0

Energy-efficient prediction of smartphone unlocking

Saved in:
Author: Luo, Chu1; Visuri, Aku2; Klakegg, Simon2;
Organizations: 1The University of Melbourne, Melbourne, Australia
2University of Oulu, Oulu, Finland
3University of West Attica, Athens, Greece
4University of Helsinki, Helsinki, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 3.7 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe201903077772
Language: English
Published: Springer Nature, 2019
Publish Date: 2019-12-12
Description:

Abstract

We investigate the predictability of the next unlock event on smartphones, using machine learning and smartphone contextual data. In a 2-week field study with 27 participants, we demonstrate that it is possible to predict when the next unlock event will occur. Additionally, we show how our approach can improve accuracy and energy efficiency by solely relying on software-related contextual data. Based on our findings, smartphone applications and operating systems can improve their energy efficiency by utilising short-term predictions to minimise unnecessary executions, or launch computation-intensive tasks, such as OS updates, in the locked state. For instance, by inferring the next unlock event, smartphones can pre-emptively collect sensor data or prepare timely content to improve the user experience during the subsequent phone usage session.

see all

Series: Personal and ubiquitous computing
ISSN: 1617-4909
ISSN-E: 1617-4917
ISSN-L: 1617-4909
Volume: 23
Issue: 1
Pages: 159 - 177
DOI: 10.1007/s00779-018-01190-0
OADOI: https://oadoi.org/10.1007/s00779-018-01190-0
Type of Publication: A1 Journal article – refereed
Field of Science: 113 Computer and information sciences
Subjects:
Copyright information: © Springer-Verlag London Ltd., part of Springer Nature 2018. This is a post-peer-review, pre-copyedit version of an article published in Personal and Ubiquitous Computing. The final authenticated version is available online at: https://doi.org/10.1007/s00779-018-01190-0.