University of Oulu

O. L. A. López, H. Alves and M. Latva-aho, "Joint Power Control and Rate Allocation enabling Ultra-Reliability and Energy Efficiency in SIMO Wireless Networks," in IEEE Transactions on Communications. doi: 10.1109/TCOMM.2019.2914682

Joint power control and rate allocation enabling ultra-reliability and energy efficiency in SIMO wireless networks

Saved in:
Author: Alcaraz López, Onel L.1; Alves, Hirley1; Latva-aho, Matti1
Organizations: 1Centre for Wireless Communications (CWC), University of Oulu, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 0.7 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2019051415495
Language: English
Published: Institute of Electrical and Electronics Engineers, 2019
Publish Date: 2019-05-14
Description:

Abstract

Coming cellular systems are envisioned to open up to new services with stringent reliability and energy efficiency requirements. In this paper we focus on the joint power control and rate allocation problem in Single-Input Multiple-Output (SIMO) wireless systems with Rayleigh fading and stringent reliability constraints. We propose an allocation scheme that maximizes the energy efficiency of the system while making use only of average statistics of the signal and interference, and the number of antennas M that are available at the receiver side. We show the superiority of the Maximum Ratio Combining (MRC) scheme over Selection Combining (SC) in terms of energy efficiency, and prove that the gap between the optimum allocated resources converges to (M!)¹/⁽²ᴹ⁾ as the reliability constraint becomes more stringent. Meanwhile, in most cases MRC was also shown to be more energy efficient than Switch and Stay Combining (SSC) scheme, although this does not hold only when operating with extremely large M, extremely high/small average signal/interference power and/or highly power consuming receiving circuitry. Numerical results show the feasibility of the ultra-reliable operation when M increases, while greater the fixed power consumption and/or drain efficiency of the transmit amplifier is, the greater the optimum transmit power and rate.

see all

Series: IEEE transactions on communications
ISSN: 0090-6778
ISSN-E: 1558-0857
ISSN-L: 0090-6778
Volume: Early Access
Issue: Early Access
DOI: 10.1109/TCOMM.2019.2914682
OADOI: https://oadoi.org/10.1109/TCOMM.2019.2914682
Type of Publication: A1 Journal article – refereed
Field of Science: 213 Electronic, automation and communications engineering, electronics
Subjects:
Funding: This research has been financially supported by Academy of Finland, 6Genesis Flagship (Grant n.318937) and ee-IoT (Grant n.319008), and Academy Professor (Grant n.307492), and the Finnish Funding Agency for Technology and Innovation (Tekes), Bittium Wireless, Keysight Technologies Finland, Kyynel, MediaTek Wireless, Nokia Solutions and Networks.
Academy of Finland Grant Number: 318937
319008
307492
Detailed Information: 318937 (Academy of Finland Funding decision)
319008 (Academy of Finland Funding decision)
307492 (Academy of Finland Funding decision)
Copyright information: © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.