University of Oulu

Al-Asadi, A. S., Henley, L. A., Wasala, M., Muchharla, B., Perea-Lopez, N., Carozo, V., … Talapatra, S. (2017). Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications. Journal of Applied Physics, 121(12), 124303. https://doi.org/10.1063/1.4979098

Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications

Saved in:
Author: Al-Asadi, Ahmed S.1,2; Henley, Luke Alexander1; Wasala, Milinda1;
Organizations: 1Department of Physics, Southern Illinois University Carbondale, Carbondale, Illinois 62901, USA
2Department of Physics, College of Education for Pure Science, University of Basrah, Basrah 61001, Iraq
3Department of Physics and Center for 2-Dimentional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
4Department of Chemistry and Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
5Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale, Carbondale, Illinois 62901, USA
6Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, P.O. Box 4500, FI-90014, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 0.6 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2019052016068
Language: English
Published: American Institute of Physics, 2017
Publish Date: 2019-05-20
Description:

Abstract

Carbon nanotube/metal oxide based hybrids are envisioned as high performance electrochemical energy storage electrodes since these systems can provide improved performances utilizing an electric double layer coupled with fast faradaic pseudocapacitive charge storage mechanisms. In this work, we show that high performance supercapacitor electrodes with a specific capacitance of ∼192 F/g along with a maximum energy density of ∼3.8 W h/kg and a power density of ∼28 kW/kg can be achieved by synthesizing zinc oxide nanowires (ZnO NWs) directly on top of aligned multi-walled carbon nanotubes (MWCNTs). In comparison to pristine MWCNTs, these constitute a 12-fold of increase in specific capacitance as well as corresponding power and energy density values. These electrodes also possess high cycling stability and were able to retain ∼99% of their specific capacitance value over 2000 charging discharging cycles. These findings indicate potential use of a MWCNT/ZnO NW hybrid material for future electrochemical energy storage applications.

see all

Series: Journal of applied physics
ISSN: 0021-8979
ISSN-E: 1089-7550
ISSN-L: 0021-8979
Volume: 121
Issue: 12
Article number: 124303
DOI: 10.1063/1.4979098
OADOI: https://oadoi.org/10.1063/1.4979098
Type of Publication: A1 Journal article – refereed
Field of Science: 114 Physical sciences
116 Chemical sciences
221 Nanotechnology
Subjects:
Funding: A.S.A is thankful for the financial support from Higher committee for educational development in Iraq (HCED-IRAQ). ST and KM would like to acknowledge NSF Grant No. 1133143 for partial support of this work. ST would also like to acknowledge NSF Grant No. 1623238 for partial support of this work.
Copyright information: © 2017 AIP Publishing LLC. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Applied Physics 2017 121:12 and may be found at https://doi.org/10.1063/1.4979098.