University of Oulu

Mohcene Bessaoudi, Abdelmalik Ouamane, Mebarka Belahcene, Ammar Chouchane, Elhocine Boutellaa, Salah Bourennane, Multilinear Side-Information based Discriminant Analysis for face and kinship verification in the wild, Neurocomputing, Volume 329, 2019, Pages 267-278, ISSN 0925-2312,

Multilinear Side-Information based Discriminant Analysis for face and kinship verification in the wild

Saved in:
Author: Bessaoudi, Mohcene1; Ouamane, Abdelmalik1; Belahcene, Mebarka1;
Organizations: 1University of Biskra, Algeria
2Center for Machine Vision and Signal Analysis, University of Oulu, Finland
3Institut Fresnel, Université de Marseille, France
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 3.5 MB)
Persistent link:
Language: English
Published: Elsevier, 2019
Publish Date: 2020-09-27


This paper presents a new approach for face and kinship verification under unconstrained environments. The proposed approach is based on high order tensor representation of face images. The face tensor is built based on local descriptors extracted at multiscales. Besides, we formulate a novel Multilinear Side-Information based Discriminant Analysis (MSIDA) to handle the weakly supervised multilinear subspace projection and classification. Using only the weak label information, MSIDA projects the input face tensor in a new subspace in which the discrimination is improved and the dimension of each tensor mode is reduced simultaneously. Experimental evaluation on four challenging face databases (LFW, Cornell KinFace, UB KinFace and TSKinface) demonstrates that the proposed approach significantly outperforms the current state of the art.

see all

Series: Neurocomputing
ISSN: 0925-2312
ISSN-E: 1872-8286
ISSN-L: 0925-2312
Volume: 329
Pages: 267 - 278
DOI: 10.1016/j.neucom.2018.09.051
Type of Publication: A1 Journal article – refereed
Field of Science: 213 Electronic, automation and communications engineering, electronics
Copyright information: © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license