Measurement of shock pressure and shock-wave attenuation near a blast hole in rock |
|
Author: | Chi, Li Yuan1,2; Zhang, Zong-Xian3; Aalberg, Arne1; |
Organizations: |
1Department of Arctic Technology, the University Centre in Svalbard (UNIS), Longyearbyen, Norway 2Department of Geoscience and Petroleum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway 3Oulu Mining School, University of Oulu, Oulu, Finland
4State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China
|
Format: | article |
Version: | accepted version |
Access: | open |
Online Access: | PDF Full Text (PDF, 1.9 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe2019061220139 |
Language: | English |
Published: |
Elsevier,
2019
|
Publish Date: | 2020-11-08 |
Description: |
AbstractThe objective of this study was to investigate granite responses to blasting. The focus was on the pressure and attenuation of shock waves in granite. Tests are reported on ten cylinders subjected to explosions from central pressed trinitrotoluene (TNT) charges with approximate density of 1.6 g/cm³. Three cylinders had dimensions Ø150 mm × 200 mm; seven, Ø240 mm × 300 mm. Specimens had concentric holes drilled from both ends: one 20-mm hole to position the explosive charge and one 50-mm hole to insert a granite plug equipped with Manganin gauges, which were applied to monitor the pressures of the shock waves. The configuration of the gauges was analyzed before testing to investigate how precisely they could measure shock waves in the granite. One or two gauges were used in each cylinder at distances of 7, 15, 22 or 35 mm from the explosive charge in the cylinder axis. At detonation of the charge, the measured peak pressure values ranged from 15.9–4.4 GPa depending on distance from the explosive, with pressure rise times of ∼0.5 μs. In one specimen, deflagration occurred, resulting in a low peak pressure of 1.35 GPa 11 mm from the explosive and a 16-μs pressure rise time. For specimens with two gauges, shock-wave velocities were found to depend strongly on the distance from the explosive. Fitting a curve to the experimental data, an exponential relation for the shock-wave peak pressure and its attenuation was obtained, expressing pressure (GPa) as a function of increasing distance (mm) from the explosive: p = 19.4exp(−0.04x). The findings, especially regarding the damping term, may for instance be useful for verification of numerical models for blasting simulation. see all
|
Series: |
International journal of impact engineering |
ISSN: | 0734-743X |
ISSN-E: | 1879-3509 |
ISSN-L: | 0734-743X |
Volume: | 125 |
Pages: | 27 - 38 |
DOI: | 10.1016/j.ijimpeng.2018.11.002 |
OADOI: | https://oadoi.org/10.1016/j.ijimpeng.2018.11.002 |
Type of Publication: |
A1 Journal article – refereed |
Field of Science: |
1171 Geosciences |
Subjects: | |
Funding: |
This work is financed by the University Centre in Svalbard. |
Copyright information: |
© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |