University of Oulu

Karsisto, V. and L. Lovén, 2019: Verification of Road Surface Temperature Forecasts Assimilating Data from Mobile Sensors. Wea. Forecasting, 34, 539–558, https://doi.org/10.1175/WAF-D-18-0167.1

Verification of road surface temperature forecasts assimilating data from mobile sensors

Saved in:
Author: Karsisto, Virve1,2; Lovén, Lauri3
Organizations: 1Finnish Meteorological Institute, Helsinki, Finland
2University of Helsinki, Finland
3University of Oulu, Finland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 2.2 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2019061921025
Language: English
Published: American Meteorological Society, 2019
Publish Date: 2020-06-19
Description:

Abstract

The advances in communication technologies have made it possible to gather road condition information from moving vehicles in real time. However, data quality must be assessed and its effects on the road weather forecasts analyzed before using the new data as input in forecasting systems. Road surface temperature forecasts assimilating mobile observations in the initialization were verified in this study. In addition to using measured values directly, different statistical corrections were applied to the mobile observations before using them in the road weather model. The verification results are compared to a control run without surface temperature measurements and to a control run that utilized interpolated values from surrounding road weather stations. Simulations were done for the period 12 October 2017–30 April 2018 for stationary road weather station points in southern Finland. Road surface temperature observations from the stations were used in the forecast verification. According to the results, the mobile observations improved the accuracy of road surface temperature forecasts when compared to the first control run. The statistical correction methods had a positive effect on forecast accuracy during the winter, but the effect varied during spring when the daily temperature variation was strong. In the winter season, the forecasts based on the interpolated road surface temperature values and the forecasts utilizing mobile observations with statistical correction had comparable accuracy. However, the tested area has high road weather station density and not much elevation variation, so results might have been different in more varying terrain.

see all

Series: Weather and forecasting
ISSN: 0882-8156
ISSN-E: 1520-0434
ISSN-L: 0882-8156
Volume: 34
Issue: 3
Pages: 539 - 558
DOI: 10.1175/WAF-D-18-0167.1
OADOI: https://oadoi.org/10.1175/WAF-D-18-0167.1
Type of Publication: A1 Journal article – refereed
Field of Science: 119 Other natural sciences
Subjects:
Copyright information: © 2019 American Meteorological Society.