University of Oulu

Farrokhnia M., Pijeira-Díaz Hé.J., Noroozi O. & Hatami J., Computer-supported collaborative concept mapping: The effects of different instructional designs on conceptual understanding and knowledge co-construction, Computers & Education (2019), doi: https://doi.org/10.1016/j.compedu.2019.103640

Computer-supported collaborative concept mapping : the effects of different instructional designs on conceptual understanding and knowledge co-construction

Saved in:
Author: Farrokhnia, Mohammadreza1; Pijeira-Díaz, Héctor J.2; Noroozi, Omid3;
Organizations: 1Faculty of Humanities, Tarbiat Modares University, P.O. BOX 14115, 111, Tehran, Iran
2Faculty of Education, University of Oulu, P.O. BOX 2000, 90014, Finland
3Faculty of Education and Learning Sciences, Wageningen University, P.O. BOX 8130, 6700EW, Netherlands
Format: article
Version: accepted version
Access: embargoed
Persistent link: http://urn.fi/urn:nbn:fi-fe2019082725789
Language: English
Published: Elsevier, 2019
Publish Date: 2022-07-30
Description:

Abstract

Computer-supported collaborative concept mapping (CSCCM) leverages technology and concept mapping to support conceptual understanding, as well as collaborative learning to foster knowledge co-construction. This article investigated the effect of different instructional designs using CSCCM on students’ conceptual understanding, and on the type of processes of knowledge co-construction that students engage. Participants (N = 120) were 10th graders enrolled in their physics course, randomly distributed in dyads. They were asked to draw concept maps related to the conservation of energy law, by using CSCCM with different instructional designs (i.e., control, Exp. 1 and Exp. 2). In the control condition, dyads worked collaboratively all the time. In both Exp. 1 and Exp. 2, dyads worked first individually (one week) and then collaboratively (two weeks). However, in Exp. 2, the individual concept map was shared with the peer before collaborating. Conceptual understanding improved significantly for learners in all three experimental conditions, especially in Exp. 2. Statistically significant differences were found in students’ knowledge co-construction among the three conditions. Dyads in the control group showed a significantly higher use of quick consensus-building. Dyads in Exp. 1 showed a significantly higher reliance on externalization and elicitation. Dyads in Exp. 2 showed a significantly higher enacting of integration- and conflict-oriented consensus building. Accordingly, an instructional design like Exp. 2 optimizes CSCCM learning outcomes in terms of conceptual understanding and knowledge co-construction.

see all

Series: Computers & education
ISSN: 0360-1315
ISSN-E: 1873-782X
ISSN-L: 0360-1315
Volume: 142
Article number: 103640
DOI: 10.1016/j.compedu.2019.103640
OADOI: https://oadoi.org/10.1016/j.compedu.2019.103640
Type of Publication: A1 Journal article – refereed
Field of Science: 516 Educational sciences
Subjects:
Copyright information: © 2019 Elsevier Ltd. All rights reserved.