University of Oulu

Huang L, Korhonen RK, Turunen MJ, Finnilä MAJ. 2019. Experimental mechanical strain measurement of tissues. PeerJ 7:e6545

Experimental mechanical strain measurement of tissues

Saved in:
Author: Huang, Lingwei1; Korhonen, Rami K.1; Turunen, Mikael J.1;
Organizations: 1Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
2Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
3Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 2.5 MB)
Persistent link:
Language: English
Published: PeerJ, 2019
Publish Date: 2019-09-24


Strain, an important biomechanical factor, occurs at different scales from molecules and cells to tissues and organs in physiological conditions. Under mechanical strain, the strength of tissues and their micro- and nanocomponents, the structure, proliferation, differentiation and apoptosis of cells and even the cytokines expressed by cells probably shift. Thus, the measurement of mechanical strain (i.e., relative displacement or deformation) is critical to understand functional changes in tissues, and to elucidate basic relationships between mechanical loading and tissue response. In the last decades, a great number of methods have been developed and applied to measure the deformations and mechanical strains in tissues comprising bone, tendon, ligament, muscle and brain as well as blood vessels. In this article, we have reviewed the mechanical strain measurement from six aspects: electro-based, light-based, ultrasound-based, magnetic resonance-based and computed tomography-based techniques, and the texture correlation-based image processing method. The review may help solving the problems of experimental and mechanical strain measurement of tissues under different measurement environments.

see all

Series: PeerJ
ISSN: 2167-8359
ISSN-E: 2167-8359
ISSN-L: 2167-8359
Volume: 7
Article number: e6545
DOI: 10.7717/peerj.6545
Type of Publication: A1 Journal article – refereed
Field of Science: 3111 Biomedicine
Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 713645.
EU Grant Number: (713645) BioMEP - Biomedical Engineering and Medical Physics
Copyright information: © 2019 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.