University of Oulu

M. Rebato, J. Park, P. Popovski, E. De Carvalho and M. Zorzi, "Stochastic Geometric Coverage Analysis in mmWave Cellular Networks With Realistic Channel and Antenna Radiation Models," in IEEE Transactions on Communications, vol. 67, no. 5, pp. 3736-3752, May 2019. doi: 10.1109/TCOMM.2019.2895850

Stochastic geometric coverage analysis in mmWave cellular networks with realistic channel and antenna radiation models

Saved in:
Author: Rebato, Mattia1; Park, Jihong2; Popovski, Petar3;
Organizations: 1Department of Information Engineering, University of Padova, Padova, Italy
2Centre for Wireless Communications, University of Oulu, Oulu, Finland
3Department of Electronic Systems, Aalborg University, Aalborg, Denmark
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 2.6 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2019092529796
Language: English
Published: Institute of Electrical and Electronics Engineers, 2019
Publish Date: 2019-09-25
Description:

Abstract

Millimeter-wave (mmWave) bands will play an important role in 5G wireless systems. The system performance can be assessed by using models from stochastic geometry that cater for the directivity in the desired signal transmissions as well as the interference, and by calculating the signal-to-interference-plus-noise ratio (SINR) coverage. Nonetheless, the accuracy of the existing coverage expressions derived through stochastic geometry may be questioned, as it is not clear whether they would capture the impact of the detailed mmWave channel and antenna features. In this paper, we propose an SINR coverage analysis framework that includes realistic channel model and antenna element radiation patterns. We introduce and estimate two parameters, aligned gain and misaligned gain, associated with the desired signal beam and the interfering signal beam, respectively. The distributions of these gains are used to determine the distribution of the SINR which is compared with the corresponding SINR coverage, calculated through the system-level simulations. The results show that both aligned and misaligned gains can be modeled as exponential-logarithmically distributed random variables with the highest accuracy, and can further be approximated as exponentially distributed random variables with reasonable accuracy. These approximations can be used as a tool to evaluate the system-level performance of various 5G connectivity scenarios in the mmWave band.

see all

Series: IEEE transactions on communications
ISSN: 0090-6778
ISSN-E: 1558-0857
ISSN-L: 0090-6778
Volume: 67
Issue: 5
Pages: 3736 - 3752
DOI: 10.1109/TCOMM.2019.2895850
OADOI: https://oadoi.org/10.1109/TCOMM.2019.2895850
Type of Publication: A1 Journal article – refereed
Field of Science: 213 Electronic, automation and communications engineering, electronics
Subjects:
Copyright information: © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.