University of Oulu

Perumal, P., Piekkari, K., Sreenivasan, H., Kinnunen, P., & Illikainen, M. (2019). One-part geopolymers from mining residues – Effect of thermal treatment on three different tailings. Minerals Engineering, 144, 106026.

One-part geopolymers from mining residues – effect of thermal treatment on three different tailings

Saved in:
Author: Perumal, Priyadharshini1; Piekkari, Katri1; Sreenivasan, Harisankar1;
Organizations: 1Fibre and Particle Engineering Research Unit, University of Oulu, Pentti Kaiteran Katu 1, Oulu, 90014, Finland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 1.5 MB)
Persistent link:
Language: English
Published: Elsevier, 2019
Publish Date: 2019-10-17


Use of mine tailings as an aluminosilicate precursor in alkali activation is becoming an interesting alternative to manage the high-volume of waste generated from mining industries. However, very few tailings have so far been studied for their mineralogical properties and alkali activation potential. This study aims at understanding the ability of mine tailings from phosphate, kaolinite and lithium mines for their efficient participation in alkali activation. Biotite, muscovite, kaolinite, albite, and quartz were found to be the major minerals present in them. The impact of variation in mineralogy on silica and alumina solubility of these tailings was analyzed. The solubility was found to be high in impure kaolinite compared to the other two. Effectiveness of thermal treatment (750 °C and 900 °C) on improving the reactivity of these tailings in alkaline condition was also investigated. It was observed from the results that the effect of thermal treatment on the crystalline structure and solubility of an aluminosilicate material mainly depends on the mineral structure of the material, as well as the treatment temperature. Interestingly, thermal treatment reduced the solubility of lithium tailings with albite and quartz mineral. Effort has been made to relate the strength attained by alkali activation of mine tailings to their solubility values. However, despite of the higher solubility offered by impure kaolinite, phosphate tailings gives the maximum strength improvement by 62%. This can be due to the presence of calcium compounds in phosphate tailings that resulted in additional hydration products.

see all

Series: Minerals engineering
ISSN: 0892-6875
ISSN-E: 1872-9444
ISSN-L: 0892-6875
Volume: 144
Article number: 106026
DOI: 10.1016/j.mineng.2019.106026
Type of Publication: A1 Journal article – refereed
Field of Science: 218 Environmental engineering
216 Materials engineering
212 Civil and construction engineering
1172 Environmental sciences
Funding: The authors gratefully acknowledge the financial support received from the project “Novel synthesis methods for porous ceramics from mine tailings,” funded by Academy of Finland (292526).
Academy of Finland Grant Number: 292526
Detailed Information: 292526 (Academy of Finland Funding decision)
Copyright information: © 2019 Fibre and Particle Engineering Research Unit, University of Oulu, Finland. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (