University of Oulu

Panpan Li, Juho Antti Sirviö, Bright Asante, Henrikki Liimatainen, Recyclable deep eutectic solvent for the production of cationic nanocelluloses, Carbohydrate Polymers, Volume 199, 2018, Pages 219-227, ISSN 0144-8617, https://doi.org/10.1016/j.carbpol.2018.07.024

Recyclable deep eutectic solvent for the production of cationic nanocelluloses

Saved in:
Author: Li, Panpan1; Sirviö, Juho Antti1; Asante, Bright2;
Organizations: 1Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Finland
2Wood Materials Science, University of Eastern Finland, P. O. Box 111, FI-80101, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 1.3 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2019120345409
Language: English
Published: Elsevier, 2018
Publish Date: 2019-12-03
Description:

Abstract

Deep eutectic solvents (DESs) are potential green systems that can be used as reagents, extraction agents and reaction media. DESs are often biodegradable, easy to prepare and have low toxicity. In this work, a recyclable DES formed from aminoguanidine hydrochloride and glycerol (AhG) was used as a reaction medium and reagent (aminoguanidine hydrochloride) for the production of cationic nanocelluloses. Under mild conditions (i.e., a reaction time of 10 min at 70 °C), dialdehyde celluloses (DACs) with two different aldehyde contents (2.18 and 3.79 mmol g−1) were cationized by AhG DES to form cationic dialdehyde celluloses (CDACs). Both CDACs achieved a similar high charge density of approximately 1.1 mmol g−1. At 80 °C (for 10 min), a very high cationic charge density of 2.48 mmol g−1 was obtained. The recyclability of AhG DES was demonstrated by reusing it five times without decreasing the reaction efficiency. In particular, due to the low consumption of amoniguanidine hydrochloride, high recycling efficiency could be achieved without the use of any additional chemicals. The cationized celluloses, CDACs, were further mechanically disintegrated to obtain cationic nanocelluloses. According to the initial aldehyde content of DACs, the morphology of the nanocellulose could be tailored to produce highly cationic cellulose nanofibrils (CNFs) or cellulose nanocrystals (CNCs). Transmission electron microscopy confirmed that individual CNFs and CNCs with an average width of 4.6 ± 1.1 nm and 5.7 ± 1.3 nm, respectively, were obtained. Thus, the results presented here indicate that the AhG DES is a promising green and recyclable way of producing cationized CNFs and CNCs.

see all

Series: Carbohydrate polymers
ISSN: 0144-8617
ISSN-E: 1879-1344
ISSN-L: 0144-8617
Volume: 199
Pages: 219 - 227
DOI: 10.1016/j.carbpol.2018.07.024
OADOI: https://oadoi.org/10.1016/j.carbpol.2018.07.024
Type of Publication: A1 Journal article – refereed
Field of Science: 215 Chemical engineering
221 Nanotechnology
Subjects:
Funding: The study was supported by Safewood (Tekes and European Regional Development Fund): 3368/31/2015) and Bionanochemicals (Academy of Finland) Grant: 298295) Projects.
Copyright information: © 2018 The Authors. Published by Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
  https://creativecommons.org/licenses/by-nc-nd/4.0/