University of Oulu

A. Hoeller, R. D. Souza, H. Alves, O. L. Alcaraz López, S. Montejo-Sánchez and M. E. Pellenz, "Optimum LoRaWAN Configuration Under Wi-SUN Interference," in IEEE Access, vol. 7, pp. 170936-170948, 2019. doi: 10.1109/ACCESS.2019.2955750

Optimum LoRaWAN configuration under Wi-SUN interference

Saved in:
Author: Hoeller, Arliones1,2,3; Souza, Richard Demo2; Alves, Hirley3;
Organizations: 1Department of Telecommunications, Federal Institute for Education, Science, and Technology of Santa Catarina, São José 88103-310, Brazil
2Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
3Centre for Wireless Communications, University of Oulu, 90014 Oulu, Finland
4Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago 8940577, Chile
5Informatics Graduate Program, Pontifical Catholic University of Paraná, Curitiba, Brazil
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 5.8 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe202001071202
Language: English
Published: Institute of Electrical and Electronics Engineers, 2019
Publish Date: 2020-01-07
Description:

Abstract

Smart Utility Networks (SUN) rely on the Wireless-SUN (Wi-SUN) specification for years. Recently practitioners and researchers have considered Low-Power Wide-Area Networks (LPWAN) like LoRa WAN for SUN applications. With distinct technologies deployed in the same area and sharing unlicensed bands, one can expect these networks to interfere with one another. This paper builds over a LoRa WAN model to optimize network parameters while accounting for inter-technology interference. Our analytic model accounts for the interference LoRa WAN receives from IEEE 802.15.4G networks, which forms the bottom layers of Wi-SUN systems. We derive closed-form equations for the expected reliability of LoRa WAN in such scenarios. We set the model parameters with data from real measurements of the interplay among the technologies. Finally, we propose two optimization algorithms to determine the best LoRaWAN configurations, given a targeted minimum reliability level. The algorithms maximize either communication range or the number of users given constraints on the minimum number of users, minimum communication range, and minimum reliability. We validate the models and algorithms through numerical analysis and simulations. The proposed methods are useful tools for planning interference-limited networks with requirements of minimum reliability.

see all

Series: IEEE access
ISSN: 2169-3536
ISSN-E: 2169-3536
ISSN-L: 2169-3536
Volume: 7
Pages: 170936 - 170948
DOI: 10.1109/ACCESS.2019.2955750
OADOI: https://oadoi.org/10.1109/ACCESS.2019.2955750
Type of Publication: A1 Journal article – refereed
Field of Science: 213 Electronic, automation and communications engineering, electronics
Subjects:
Funding: This work was supported in part by the Brazilian National Council for Scientific and Technological Development (CNPq); in part by Brazilian Print CAPES-UFSC "Project Automation 4.0"; in part by INESC P&D Brazil Project F-LOCO, under Grant Energisa/ANEEL PD-00405-1804/2018; in part by the Academy of Finland (Aka) 6Genesis Flagship, under Grant 318927; in part by Project EE-IoT, under Grant 319008; in part by Aka Prof, under Grant 307492; and in part by the FONDECYT Postdoctoral Chile, under Grant 3170021.
Academy of Finland Grant Number: 318927
319008
307492
Detailed Information: 318927 (Academy of Finland Funding decision)
319008 (Academy of Finland Funding decision)
307492 (Academy of Finland Funding decision)
Copyright information: © The Authors 2019. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/.
  https://creativecommons.org/licenses/by/4.0/