University of Oulu

A. Padmanabhan, A. Tölli and I. Atzeni, "Distributed Two-Stage Multi-Cell Precoding," 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2019, pp. 1-5. doi: 10.1109/SPAWC.2019.8815440

Distributed two-stage multi-cell precoding

Saved in:
Author: Padmanabhan, Ayswarya1; Tölli, Antti1; Atzeni, Italo1
Organizations: 1Centre for Wireless Communications (CWC), University of Oulu, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 0.3 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe202001081453
Language: English
Published: Institute of Electrical and Electronics Engineers, 2019
Publish Date: 2020-01-08
Description:

Abstract

This paper proposes a distributed downlink precoding design for multi-cell massive multiple-input multiple-output systems. Two-stage precoding is adopted assuming that the user equipments (UEs) in each base station (BS) are grouped according to matching channel statistics. In this regard, the channel dimension is first reduced by means of statistical, group-specific processing. Subsequently, the UE-specific inner beamformers (IBFs) are optimized based on the resulting (lower-dimensional) effective channels, with sensibly reduced computational complexity. We begin by formulating a centralized IBF design that derives from iteratively solving the Karush-Kuhn-Tucker conditions of the weighted sum rate maximization problem. Then, we propose a distributed algorithm where inter-cell interference (ICI) terms and dual variables are periodically exchanged among neighboring BSs via backhaul signaling, whereas the inter-group interference (IGI) within each BS is handled locally. Furthermore, the ICI updates between the BSs are allowed to take place less frequently than the local IGI updates. Numerical results show that enabling backhaul signaling every 5—10 iterations of the algorithm yields a remarkably small performance loss with respect to the case with full information exchange between the BSs.

see all

Series: IEEE International Workshop on Signal Processing Advances in Wireless Communications
ISSN: 2325-3789
ISSN-L: 2325-3789
ISBN: 978-1-5386-6528-2
ISBN Print: 978-1-5386-6529-9
Article number: 8815440
DOI: 10.1109/SPAWC.2019.8815440
OADOI: https://oadoi.org/10.1109/SPAWC.2019.8815440
Host publication: 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
Conference: International Workshop on Signal Processing Advances in Wireless Communications
Type of Publication: A4 Article in conference proceedings
Field of Science: 213 Electronic, automation and communications engineering, electronics
Subjects:
Copyright information: © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.