University of Oulu

Nasim, S., Oussalah, M., Haghighi, A. T., Klove, B., Snow depth classification using MultiSensory ubiquitous platform and machine learning, Proceedings of the FRUCT’25, Helsinki, Finland, 5-8 November 2019, ISSN: 2305-7254, p. 546-551

Snow depth classification using MultiSensory ubiquitous platform and machine learning

Saved in:
Author: Nasim, Sofeem1; Oussalah, Mourad1; Haghighi, Ali Torabi2;
Organizations: 1Centre for Machine Vision and Signal Processing, University of Oulu, Finland
2Water Resources Environmental Engineering, University of Oulu, Finland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 0.9 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe202001202598
Language: English
Published: FRUCT, 2019
Publish Date: 2020-01-20
Description:

Abstract

In the drastic period of climate change the continuous data monitoring of snow characteristic is required. The immensely impact of snow on hydro production, water resource management and its inhabitants, drive to the need for the importance of snow information such as its extent, dynamics and water it holds at global and local scale. At present, there are various approaches such as traditional ground-based approach, optical satellite imaging and the radio, which are available for snow monitoring at global scale. However, the use of these approaches incurs from large labor and high monitoring cost. Since, the advance in sensor technologies and Internet of Things (Iot), provides an appealing possibility to develop a framework for monitoring snow parameters at enormously low cost. In this study. we implemented two machine learning classifiers model based on the input acquired from the low-cost wearable sensor platform. The results of Random forest classifier showed the accuracy of 88.8%, indicate a promising alternative in snow depth measurements with in-situ validation, when data or wireless sensor network are not available or affordable.

see all

Series: Proceedings of Conference of Open Innovations Association FRUCT
ISSN: 2305-7254
ISSN-E: 2343-0737
ISSN-L: 2305-7254
ISBN: 978-952-69244-0-3
Pages: 546 - 551
Host publication: Proceedings of the FRUCT’25, Helsinki, Finland, 5-8 November 2019
Host publication editor: Balandin, S.
Niemi, V.
Tuytina, T.
Conference: Conference of Open Innovations Association FRUCT
Type of Publication: A4 Article in conference proceedings
Field of Science: 114 Physical sciences
Subjects:
Funding: This work is partially supported by CBC Karelia IoT Business Creation project (2018-2020). The authors would also like to thank members of FabLab at University for their help in designing the ubiquitous platform.
Copyright information: © The Authors 2019.