University of Oulu

O. S. Badarneh, D. B. Da Costa and P. H. J. Nardelli, "Wireless-Powered Communication Networks With Random Mobility," in IEEE Access, vol. 7, pp. 166476-166492, 2019. doi: 10.1109/ACCESS.2019.2952954

Wireless-powered communication networks with random mobility

Saved in:
Author: Badarneh, Osamah S.1; Da Costa, Daniel B.2; Nardelli, Pedro Henrique Juliano3,4
Organizations: 1Electrical and Communication Engineering Department, School of Electrical Engineering and Information Technology, German-Jordanian University, Amman, Jordan
2Department of Computer Engineering, Federal University of Ceará, Sobral, CE, Brazil
3School of Energy Systems, LUT University, Finland
4Centre for Wireless Communications, University of Oulu, Finland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 2 MB)
Persistent link:
Language: English
Published: Institute of Electrical and Electronics Engineers, 2019
Publish Date: 2020-02-19


In this paper, we consider a wireless-powered communication network (WPCN), where an energy-limited multi-antenna information source, powered by a dedicated power beacon, communicates with a mobile user (MU). The MU is equipped with a single-antenna and its mobility is characterized by the well-known random waypoint mobility model. To gain the advantages with the use of multiple antennas at the source, we adopt two popular multiple-antenna transmission schemes, namely maximal-ratio transmission (MRT) and transmit antenna selection (TAS). Differently from previous works which considered only static scenarios, this paper aims to investigate wireless power and information transfer in the scenario with a random mobile user under Nakagami-$m$ fading. It is noteworthy that a special case of our analysis, i.e., the Rayleigh fading case, has not been examined in the literature as well, which enhances the contribution value of the proposed analysis. Considering both MRT and TAS schemes, closed-form expressions for the outage probability, average delay-limit throughput, average delay-tolerant throughput, average bit error rate (BER), and throughput under average BER constraint are derived. The analysis quantifies the impact of the mobility and propagation environments, which are characterized by the path-loss exponent and multipath parameter for the PB-AP link and AP-MU link, on the performance of a WPCN. The analytical results are compared with Monte-Carlo simulations in order to validate the analysis and provide useful insights on the impact of different parameters on the system performance.

see all

Series: IEEE access
ISSN: 2169-3536
ISSN-E: 2169-3536
ISSN-L: 2169-3536
Volume: 7
Pages: 166476 - 166492
DOI: 10.1109/ACCESS.2019.2952954
Type of Publication: A1 Journal article – refereed
Field of Science: 213 Electronic, automation and communications engineering, electronics
Copyright information: © 2019 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see