Signal recovery in compressive sensing via multiple sparsifying bases |
|
Author: | Wijewardhana, U. L.1; Belyaev, E.2; Codreanu, M.1; |
Organizations: |
1Centre for Wireless Communications, University of Oulu, Oulu, 90570, Finland 2Department of Photonics Engineering, Technical University of Denmark, Lyngby, 2800 Kgs, Denmark |
Format: | article |
Version: | accepted version |
Access: | open |
Online Access: | PDF Full Text (PDF, 0.3 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe202003208625 |
Language: | English |
Published: |
IEEE Computer Society Press,
2017
|
Publish Date: | 2020-03-20 |
Description: |
AbstractCompressive sensing theory asserts that, under certain conditions, a high dimensional but compressible signal can be recovered from a small number of random linear projections by utilizing computationally efficient algorithms. The a priori knowledge of the basis in which the signal of interest is sparse is the key assumption utilized by such algorithms. However, the basis in which the signal is the sparsest is unknown for many natural signals of interest. Instead there may exist multiple bases which lead to a compressible representation of the signal: e.g., an image is compressible in different wavelet transforms. We show that a significant performance improvement can be achieved by utilizing multiple estimates of the signal using sparsifying bases in the context of signal reconstruction from compressive samples. Further, we derive a customized interior-point method to jointly obtain multiple estimates of a 2-D signal (image) from compressive measurements utilizing multiple sparsifying bases as well as the fact that the images usually have a sparse gradient. see all
|
Series: |
Proceedings. Data Compression Conference |
ISSN: | 1068-0314 |
ISSN-E: | 2375-0391 |
ISSN-L: | 1068-0314 |
ISBN: | 978-1-5090-6721-3 |
ISBN Print: | 978-1-5090-6722-0 |
Pages: | 141 - 150 |
DOI: | 10.1109/DCC.2017.37 |
OADOI: | https://oadoi.org/10.1109/DCC.2017.37 |
Host publication: |
Proceedings DCC2017, Data Compression Conference, 4–7 April 2017, Snowbird, Utah, USA |
Host publication editor: |
Bilgin, Ali Marcellin, Michael W. Serra-Sagrista, Joan Storer, James A. |
Conference: |
Data Compression Conference |
Type of Publication: |
A4 Article in conference proceedings |
Field of Science: |
213 Electronic, automation and communications engineering, electronics |
Subjects: | |
Copyright information: |
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |